Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

2018, 2(3): 189-207. doi: 10.26464/epp2018019

SOLID EARTH: GEODYNAMICS

Reproducing past subduction and mantle flow using high-resolution global convection models

Department of Geology, University of Illinois at Urbana-Champaign, 605 E. Springfield Ave, Champaign, IL, 61820, USA

Corresponding author: JiaShun Hu, jhu16@illinois.eduLiJun Liu, ljliu@illinois.edu

Received Date: 2018-02-05
Web Publishing Date: 2018-05-01

Plate subduction drives both the internal convection and the surface geology of the solid Earth. Despite the rapid increase of computational power, it remains challenging for geodynamic models to reproduce the history of Earth-like subduction and associated mantle flow. Here, based on an adaptive approach of sequential data assimilation, we present a high-resolution global model since the mid-Mesozoic. This model incorporates the thermal structure and surface kinematics of tectonic plates based on a recent plate reconstruction to reproduce the observed subduction configuration and Earth-like convection. Introduction of temperature- and composition-dependent rheology allows for incorporation of many natural complexities, such as initiation of subduction zones, reversal of subduction polarity, and detailed plate-boundary dynamics. The resultant present-day slab geometry well matches Benioff zones and seismic tomography at depths < 1500 km, making it possible to hindcast past subduction dynamics and mantle flow. For example, the model produces a flat Farallon slab beneath North America during the Late Cretaceous to Early Cenozoic, a feature that has been geodynamically challenging to reproduce. This high-resolution model can also capture details of the 4-D evolution of slabs and the ambient mantle, such as temporally and spatially varying mantle flow associated with evolving slab geometry and buoyancy flux, as well as the formation of shallow slab tears due to subduction of young seafloors and the resulting complex mantle deformation. Such a geodynamic framework serves to further constrain uncertain plate reconstruction in the geological past, and to better understand the origin of enigmatic mantle seismic features.

Key words: global subduction model, data assimilation, Earth-like subduction, Farallon flat slab, mantle flow

Barker, P. F. (2001). Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth Sci. Rev., 55(1-2), 1–39. https://doi.org/10.1016/S0012-8252(01)00055-1

Becker, T. W., and Faccenna, C. (2011). Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett., 310(3-4), 453–461. https://doi.org/10.1016/j.jpgl.2011.08.021

Bello, L., Coltice, N., Tackley, P. J., Müller, R. D., and Cannon, J. (2015). Assessing the role of slab rheology in coupled plate-mantle convection models. Earth Planet. Sci. Lett., 430, 191–201. https://doi.org/10.1016/j.jpgl.2015.08.010

Billen, M. I., and Hirth, G. (2007). Rheologic controls on slab dynamics. Geochem. Geophys. Geosyst., 8(8), Q08012. https://doi.org/10.1029/2007GC001597

Bird, P. (1988). Formation of the Rocky Mountains, western United States: A continuum computer model. Science, 239(4847), 1501–1507. https://doi.org/10.1126/science.239.4847.1501

Bower, D. J., Gurnis, M., and Flament, N. (2015). Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter., 238, 8–22. https://doi.org/10.1016/j.pepi.2014.10.013

Bunge, H. P., Richards, M. A., Lithgow-Bertelloni, C., Baumgardner, J. R., Grand, S. P., and Romanowicz, B. A. (1998). Time scales and heterogeneous structure in geodynamic Earth models, Science, 280(5360), 91–95. https://doi.org/10.1126/science.280.5360.91

Burke, K., Steinberger, B., Torsvik, T. H., and Smethurst, M. A. (2008). Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett., 265(1-2), 49–60. https://doi.org/10.1016/j.jpgl.2007.09.042

Coltice, N., Rolf, T., Tackley, P. J., and Labrosse, S. (2012). Dynamic causes of the relation between area and age of the ocean floor. Science, 336(6079), 335–338. https://doi.org/10.1126/science.1219120

Coney, P. J., and Reynolds, S. J. (1977). Cordilleran benioff zones. Nature, 270(5636), 403–406. https://doi.org/10.1038/270403a0

Conrad, C. P., and Lithgow-Bertelloni, C. (2002). How mantle slabs drive plate tectonics. Science, 298(5591), 207–209. https://doi.org/10.1126/science.1074161

Crameri, F., Tackley, P. J., Meilick, I., Gerya, T. V., and Kaus, B. J. P. (2012). A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett., 39(3), L03306. https://doi.org/10.1029/2011GL050046

Cross, T. A., and Pilger, Jr. R. H. (1978). Tectonic controls of Late Cretaceous sedimentation, western interior, USA. Nature, 274(5672), 653–657. https://doi.org/10.1038/274653a0

Davies, D. R., Davies, J. H., Hassan, O., Morgan, K., and Nithiarasu, P. (2007). Investigations into the applicability of adaptive finite element methods to two-dimensional infinite Prandtl number thermal and thermochemical convection. Geochem. Geophys. Geosyst., 8(5), Q05010. https://doi.org/10.1029/2006GC001470

DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A. Am. J. Sci., 304(2), 105–168. https://doi.org/10.2475/ajs.304.2.105

DeCelles, P. G., Ducea, M. N., Kapp, P., and Zandt, G. (2009). Cyclicity in Cordilleran orogenic systems. Nat. Geosci., 2(4), 251–257. https://doi.org/10.1038/ngeo469

Eakin, C. M., Lithgow-Bertelloni, C., and Dávila, F. M. (2014). Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia. Earth Planet. Sci. Lett., 404, 250–260. https://doi.org/10.1016/j.jpgl.2014.07.027

Engebretson, D. C., Cox, A., and Gordon, R. G. (1985). Relative Motions between Oceanic and Continental Plates in the Pacific Basin, (pp. 1–60). Boulder, Colo.: GSA.222

English, J. M., Johnston, S. T., and Wang, K. L. (2003). Thermal modelling of the Laramide orogeny: testing the flat-slab subduction hypothesis. Earth Planet. Sci. Lett., 214(3-4), 619–632. https://doi.org/10.1016/S0012-821X(03)00399-6

Flament, N., Gurnis, M., Williams, S., Seton, M., Skogseid, J., Heine, C., and Müller, R. D. (2014). Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth Planet. Sci. Lett., 387, 107–119. https://doi.org/10.1016/j.jpgl.2013.11.017

Foley, B. J., and Becker, T. W. (2009). Generation of plate–like behavior and mantle heterogeneity from a spherical, viscoplastic convection model.Geochem. Geophys. Geosyst., 10(8), Q08001. https://doi.org/10.1029/2009GC002378

Fukao, Y., Obayashi, M., Inoue, H., and Nenbai, M. (1992). Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res., 97(B4), 4809–4822. https://doi.org/10.1029/91JB02749

Fukao, Y., Obayashi, M., Nakakuki, T., and the Deep Slab Project Group. (2009). Stagnant slab: a review. Annu. Rev. Earth. Planet. Sci., 37(1), 19–46. https://doi.org/10.1146/annurev.earth.36.031207.124224

Fukao, Y., and Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res., 118(11), 5920–5938. https://doi.org/10.1002/2013JB010466

Grand, S. P. (2002). Mantle shear-wave tomography and the fate of subducted slabs. Philos. Trans. A Math. Phys. Eng. Sci., 360(1800), 2475–2491. https://doi.org/10.1098/rsta.2002.1077

Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Müller R. D., Boyden, J., Seton, M., Manea, V. C., and Bower, D. J. (2012). Plate tectonic reconstructions with continuously closing plates. Comput. Geosci., 38(1), 35–42. https://doi.org/10.1016/j.cageo.2011.04.014

Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E., and Flament, N. (2016). A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533(7602), 239–242. https://doi.org/10.1038/nature17422

Hayes, G. P., Wald, D. J., and Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res., 117(B1), B01302. https://doi.org/10.1029/2011JB008524

Hu, J. S., Liu, L. J., Hermosillo, A., and Zhou, Q. (2016). Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation. Earth Planet. Sci. Lett., 438, 1–13. https://doi.org/10.1016/j.jpgl.2016.01.011

Hu, J. S., Faccenda, M., and Liu, L. J. (2017). Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett., 470, 13–24. https://doi.org/10.1016/j.jpgl.2017.04.027

Hu, J. S., Liu, L. J., Faccenda, M., Zhou, Q., Fischer, K. M., Marshak, S., and Lundstrom, C. (2018). Modification of the Western Gondwana craton by plume-lithosphere interaction. Nat. Geosci., 11(3), 203–210. https://doi.org/10.1038/s41561-018-0064-1

Huang, J. L., and Zhao, D. P. (2006). High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111(B9), B09305. https://doi.org/10.1029/2005JB004066

Idárraga-García, J., Kendall, J. M., and Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochem., Geophys., Geosyst., 17(9), 3655–3673. https://doi.org/10.1002/2016GC006323

Karato, S. I., and Wu, P. (1993). Rheology of the upper mantle: A synthesis. Science, 260(5109), 771–778. https://doi.org/10.1126/science.260.5109.771

Lay, T., Hernlund, J., and Buffett, B. A. (2008). Core–mantle boundary heat flow. Nat. Geosci., 1(1), 25–32. https://doi.org/10.1038/ngeo.2007.44

Leng, W., and Gurnis, M. (2011). Dynamics of subduction initiation with different evolutionary pathways. Geochem. Geophys. Geosyst., 12(12), Q12018. https://doi.org/10.1029/2011GC003877

Levander, A., Bezada, M. J., Niu, F. L., Humphreys, E. D., Palomeras, I., Thurner, S. M., Masy, J., Schmitz, M., Gallart, J., … Miller, M. S. (2014). Subduction-driven recycling of continental margin lithosphere. Nature, 515(7526), 253–256. https://doi.org/10.1038/nature13878

Liu, L. J., Spasojević, S., and Gurnis, M. (2008). Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322(5903), 934–938. https://doi.org/10.1126/science.1162921

Liu, L. J., Gurnis, M., Seton, M., Saleeby, J., Müller, R. D., and Jackson, J. M. (2010). The role of oceanic plateau subduction in the Laramide orogeny. Nat. Geosci., 3(5), 353–357. https://doi.org/10.1038/ngeo829

Liu, L. J., and Stegman, D. R. (2011). Segmentation of the Farallon slab. Earth Planet. Sci. Lett., 311(1-2), 1–10. https://doi.org/10.1016/j.jpgl.2011.09.027

Liu, S. B., and Currie, C. A. (2016). Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666, 33–47. https://doi.org/10.1016/j.tecto.2015.10.010

Mallard, C., Coltice, N., Seton, M., Müller, R. D., and Tackley, P. J. (2016). Subduction controls the distribution and fragmentation of Earth's tectonic plates. Nature, 535(7610), 140–143. https://doi.org/10.1038/nature17992

Marquardt, H., and Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci., 8(4), 311–314. https://doi.org/10.1038/ngeo2393

McKenzie, D., Jackson, J., and Priestley, K. (2005). Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett., 233(3-4), 337–349. https://doi.org/10.1016/j.jpgl.2005.02.005

McNamara, A. K., and Zhong, S. J. (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062), 1136–1139. https://doi.org/10.1038/nature04066

Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N., … Cannon, J. (2016). Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci., 44(1), 107–138. https://doi.org/10.1146/annurev-earth-060115-012211

Obayashi, M., Yoshimitsu, J., Nolet, G., Fukao, Y., Shiobara, H., Sugioka, H., Miyamachi, H., and Gao, Y. (2013). Finite frequency whole mantle P wave tomography: Improvement of subducted slab images. Geophys. Res. Lett., 40(21), 5652–5657. https://doi.org/10.1002/2013GL057401

O'Driscoll, L. J., Humphreys, E. D., and Saucier, F. (2009). Subduction adjacent to deep continental roots: Enhanced negative pressure in the mantle wedge, mountain building and continental motion. Earth Planet. Sci. Lett., 280(1-4), 61–70. https://doi.org/10.1016/j.jpgl.2009.01.020

Porritt, R. W., Becker, T. W., and Monsalve, G. (2014). Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophy. Res. Lett., 41(24), 8775–8783. https://doi.org/10.1002/2014GL061958

Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x

Rudolph, M. L., Lekić, V., and Lithgow-Bertelloni, C. (2015). Viscosity jump in Earth’s mid-mantle. Science, 350(6266), 1349–1352. https://doi.org/10.1126/science.aad1929

Saleeby, J. (2003). Segmentation of the Laramide slab-Evidence from the southern Sierra Nevada region. Geol. Soc. Am. Bull., 115(6), 655–668. https://doi.org/10.1130/0016-7606(2003)115<0655:SOTLSF>2.0.CO;2

Schellart, W. P. (2008). Overriding plate shortening and extension above subduction zones: A parametric study to explain formation of the Andes Mountains. Geol. Soc. Am. Bull., 120(11-12), 1441–1454. https://doi.org/10.1130/B26360.1

Seton, M., Flament, N., Whittaker, J., Müller, R. D., Gurnis, M., and Bower, D. J. (2015). Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago. Geophys. Res. Lett., 42(6), 1732–1740. https://doi.org/10.1002/2015GL063057

Simmons, N. A., Myers, S. C., Johannesson, G., and Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. J. Geophys. Res., 117(B10), B10302. https://doi.org/10.1029/2012JB009525

Snyder, W. S., Dickinson, W. R., and Silberman, M. L. (1976). Tectonic implications of space-time patterns of Cenozoic magmatism in the western United States. Earth Planet. Sci. Lett., 32(1), 91–106. https://doi.org/10.1016/0012-821X(76)90189-8

Stadler, S., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas, O. (2010). The dynamics of plate tectonics and mantle flow: From local to global scales. Science, 329(5995), 1033–1038. https://doi.org/10.1126/science.1191223

Steinberger, B., and Calderwood, A. R. (2006). Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations. Geophys. J. Int., 167(3), 1461–1481. https://doi.org/10.1111/j.1365-246X.2006.03131.x

Steinberger, B., and Torsvik, T. H. (2010). Toward an explanation for the present and past locations of the poles. Geochem. Geophys. Geosyst., 11(6), Q06W06. https://doi.org/10.1029/2009GC002889

Tan, E., Choi, E., Thoutireddy, P., Gurnis, M., and Aivazis, M. (2006). GeoFramework: Coupling multiple models of mantle convection within a computational framework. Geochem. Geophys. Geosyst., 7(6), Q06001. https://doi.org/10.1029/2005GC001155

Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B., and Gaina, C. (2008). Global plate motion frames: toward a unified model. Rev. Geophys., 46(3), RG3004. https://doi.org/10.1029/2007RG000227

Trumbull, R. B., Riller, U., Oncken, O., Scheuber, E., Munier, K., and Hongn, F. (2006). The time-space distribution of Cenozoic volcanism in the South-Central Andes: a new data compilation and some tectonic implications. In Oncken, O., et al. (Eds.), The Andes (pp. 29–43). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-540-48684-8_2222

van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L., and Torsvik, T. H. (2010). Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci., 3(1), 36–40. https://doi.org/10.1038/ngeo708

Van der Voo, R., Spakman, W., and Bijwaard, H. (1999). Tethyan subducted slabs under India. Earth Planet. Sci. Lett., 171(1), 7–20. https://doi.org/10.1016/S0012-821X(99)00131-4

Wu, J., Suppe, J., Lu, R. Q., and Kanda, R. (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J. Geophys. Res., 121(6), 4670–4741. https://doi.org/10.1002/2016JB012923

Zahirovic, S., Matthews, K. J., Flament, N., Müller, R. D., Hill, K. C., Seton, M., and Gurnis, M. (2016). Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth Sci. Rev., 162, 293–337. https://doi.org/10.1016/j.earscirev.2016.09.005

Zhang, N., and Li, Z. X. (2018). Formation of mantle " lone plumes” in the global downwelling zone—A multiscale modelling of subduction-controlled plume generation beneath the South China Sea. Tectonophysics, 723, 1–13. https://doi.org/10.1016/j.tecto.2017.11.038

Zhong, S. J., McNamara, A., Tan, E., Moresi, L., and Gurnis, M. (2008). A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst., 9(10), Q10017. https://doi.org/10.1029/2008GC002048

Zhou, Q., Liu, L. J., and Hu, J. S. (2018). Western US Volcanism due to Intruding Oceanic Mantle Driven by Ancient Farallon Slabs. Nat. Geosci., 11(1), 70–76. https://doi.org/10.1038/s41561-017-0035-y

[1]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[2]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

[3]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[4]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[5]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[6]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[7]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[8]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

[9]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[10]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[11]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Reproducing past subduction and mantle flow using high-resolution global convection models

JiaShun Hu, LiJun Liu, Quan Zhou