Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

2018, 2(3): 208-219. doi: 10.26464/epp2018020


Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase


Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

Corresponding author: QingHui Cui, qinghuicui@ucas.ac.cnYuanZe Zhou, yzzhou@ucas.ac.cn

Received Date: 2018-01-12
Web Publishing Date: 2018-05-01

The X-discontinuity, which appears at the depth of approximately 300 km, is an important seismic interface with positive velocity contrasts in the upper mantle. Detecting its presence and topography can be useful to understand phase transformations of relevant mantle minerals under the high-temperature and high-pressure circumstance of the Earth's interior. In this study, we detect the X-discontinuity beneath the Ryukyu subduction zone using five intermediate-depth events recorded by the dense Alaska Regional Network (AK). The X-discontinuity is successfully revealed from the robust slant stacking of the secondary down-going and converting SdP phases. From the depth distribution of conversion points, we find that the X-discontinuity's depth ranges between 269 km and 313 km, with an average depth of 295 km. All the conversion points are located beneath the down-dipping side of the Philippine Sea slab. From energy comparisons in vespagrams for observed and synthetic seismograms, the strong converted energy is more likely from a thin high-velocity layer, and the S-wave velocity jumps across the X-discontinuity are up to 5% to 8% with an average of 6.0%. According to previous petrological and seismological studies, the X-discontinuity we detected can be interpreted as the phase transformation of coesite to stishovite in eclogitic materials within the oceanic crust.

Key words: Ryukyu subduction zone, X-discontinuity, coesite-stishovite transformation, dense network, SdP conversion phase

Bagley, B., and Revenaugh, J. (2008). Upper mantle seismic shear discontinuities of the Pacific. J. Geophys. Res., 113(B12), B12301. https://doi.org/10.1029/2008jb005692

Bagley, B., Courtier, A. M., and Revenaugh, J. (2009). Melting in the deep upper mantle oceanward of the Honshu slab. Phys. Earth Planet. Inter., 175(3-4), 137-144. https://doi.org/10.1016/j.pepi.2009.03.007

Castle, J. C., and Creager, K. C. (2000). Local sharpness and shear wave speed jump across the 660-km discontinuity. J. Geophys. Res., 105(B3), 6191-6200. https://doi.org/10.1029/1999jb900424

Chen, J., Zhou, Y. Z., and Wang, H. C. (2014). Detection of the Lehmann discontinuity beneath Tonga with short-period waveform data from Hi-net. Sci. China Earth Sci., 57(8), 1953-1960. https://doi.org/10.1007/s11430-014-4834-3

Chen, T., Gwanmesia, G. D., Wang, X. B., Zou, Y. T., Liebermann, R. C., Michaut, C., and Li, B. S. (2015). Anomalous elastic properties of coesite at high pressure and implications for the upper mantle X-discontinuity. Earth Planet. Sci. Lett., 412, 42-51. https://doi.org/10.1016/j.jpgl.2014.12.025

Collier, J. D., and Helffrich, G. R. (1997). Topography of the "410" and "660" km seismic discontinuities in the Izu-Bonin subduction zone. Geophys. Res. Lett., 24(12), 1535-1538. https://doi.org/10.1029/97gl01383

Courtier, A. M., Bagley, B., and Revenaugh, J. (2007). Whole mantle discontinuity structure beneath Hawaii. Geophys. Res. Lett., 34(17), L17304. https://doi.org/10.1029/2007gl031006

Crotwell, H. P., Owens, T. J., and Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismol. Res. Lett., 70(2), 154-160. https://doi.org/10.1785/gssrl.70.2.154

Cui, Q. H., Gao, Y. J., and Zhou, Y. Z. (2017). The nature of the lithosphere-asthenosphere boundary beneath the central South America area from the stacking of sP precursors. Chinese J. Geophys., 60(4), 358-367. https://doi.org/10.1002/cjg2.30052

Cui, Q. H., Wei, R. Q., Zhou, Y. Z., Gao, Y. J., and Li, W. L. (2018). Seismic constraints on the lithosphere–asthenosphere boundary beneath the Izu-Bonin area: Implications for the oceanic lithospheric thinning. Pure Appl. Geophys. https://doi.org/10.1007/s00024-018-1783-3

de Kool, M., Rawlinson, N., and Sambridge, M. (2006). A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous media. Geophys. J. Int., 167(1), 253-270. https://doi.org/10.1111/j.1365-246X.2006.03078.x

DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21(20), 2191-2194. https://doi.org/10.1029/94gl02118

Deuss, A., and Woodhouse, J. H. (2002). A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29(8), 90-91-90-94. https://doi.org/10.1029/2002GL014768

Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86(B4), 2825-2852. https://doi.org/10.1029/JB086iB04p02825

Ekström, G., Nettles, M., and Dziewoński, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200-201, 1-9. https://doi.org/10.1016/j.pepi.2012.04.002

Fukao, Y., and Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res., 118(11), 5920-5938. https://doi.org/10.1002/2013JB010466

Gerya, T. V., Yuen, D. A., and Maresch, W. V. (2004). Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett., 226(1-2), 101-116. https://doi.org/10.1016/j.jpgl.2004.07.022

Gudmundsson, Ó., and Sambridge, M. (1998). A regionalized upper mantle (RUM) seismic model. J. Geophys. Res., 103(B4), 7121-7136. https://doi.org/10.1029/97jb02488

Hales, A. L., Muirhead, K. J., and Rynn, J. M. W. (1980). A compressional velocity distribution for the upper mantle. Tectonophysics, 63(1-4), 309-348. https://doi.org/10.1016/0040-1951(80)90119-5

Hall, R., Ali, J. R., Anderson, C. D., and Baker, S. J. (1995). Origin and motion history of the Philippine Sea Plate. Tectonophysics, 251(1-4), 229-250. https://doi.org/10.1016/0040-1951(95)00038-0

Huang, J. L., and Zhao, D. P. (2006). High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. 111(B9), B09305. https://doi.org/10.1029/2005JB004066

Huang, Z. C., Zhao, D. P., Hasegawa, A., Umino, N., Park, J. H., and Kang, I. B. (2013). Aseismic deep subduction of the Philippine Sea plate and slab window. J. Asian Earth Sci., 75, 82-94. https://doi.org/10.1016/j.jseaes.2013.07.002

Jin, Z. M., Zhang, J., Green II, H., and Jin, S. (2001). Eclogite rheology: Implications for subducted lithosphere. Geology, 29(8), 667-670. https://doi.org/10.1130/0091-7613(2001)029<0667:ERIFSL>2.0.CO;2

Kawakatsu, H., and Niu, F. L. (1994). Seismic evidence for a 920-km discontinuity in the mantle. Nature, 371(6495), 301-305. https://doi.org/10.1038/371301a0

Kennett, B. L. N., and Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105(2), 429-465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Komabayashi, T., Hirose, K., Funakoshi, K. I., and Takafuji, N. (2005). Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observations. Phys. Earth Planet Inter., 151(3-4), 276-289. https://doi.org/10.1016/j.pepi.2005.04.002

Li, A. B., Fischer, K. M., van der Lee, S., and Wysession, M. E. (2002). Crust and upper mantle discontinuity structure beneath eastern North America. J. Geophys. Res., 107(B5), ESE 7-1-ESE 7-12. https://doi.org/10.1029/2001jb000190

Li, C., van der Hilst, R. D., Engdahl, E. R., and Burdick, S. (2008a). A new global model for P wave speed variations in Earth's mantle. Geochem. Geophys. Geosyst., 9(5), Q05018. https://doi.org/10.1029/2007GC001806

Li, J., Chen, Q. F., Vanacore, E., and Niu, F. L. (2008b). Topography of the 660-km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab. Geophys. Res. Lett., 35(1), L01302. https://doi.org/10.1029/2007GL031658

Niu, F. L. (2014). Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray. Earth Planet. Sci. Lett., 402, 305-312. https://doi.org/10.1016/j.jpgl.2013.02.015

Obayashi, M., Yoshimitsu, J., Nolet, G., Fukao, Y., Shiobara, H., Sugioka, H., Miyamachi, H., and Gao, Y. (2013). Finite frequency whole mantle P wave tomography: Improvement of subducted slab images. Geophys. Res. Lett., 40(21), 5652-5657. https://doi.org/10.1002/2013gl057401

Ohtani, E. (2005). Water in the mantle. Elements, 1(1), 25-30. https://doi.org/10.2113/gselements.1.1.25

Park, J. O., Tokuyama, H., Shinohara, M., Suyehiro, K., and Taira, A. (1998). Seismic record of tectonic evolution and backarc rifting in the southern Ryukyu island arc system. Tectonophysics, 294(1-2), 21-42. https://doi.org/10.1016/S0040-1951(98)00150-4

Revenaugh, J., and Jordan, T. H. (1991). Mantle layering from ScS reverberations: 3. The upper mantle. J. Geophys. Res., 96(B12), 19781-19810. https://doi.org/10.1029/91jb01487

Ricard, Y., Mattern, E., and Matas, J. (2005). Synthetic Tomographic Images of Slabs from Mineral Physics. In Van Der Hilst, R. D., Bass, J. D., Matas, J., and Trampert, J. (Eds.), Earth's Deep Mantle: Structure, Composition, and Evolution (pp. 283–300). Washington, DC: American Geophysical Union. https://doi.org/10.1029/160gm17

Ringwood, A. E. (1991). Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta, 55(8), 2083-2110. https://doi.org/10.1016/0016-7037(91)90090-R

Ritsema, J., Deuss, A., Van Heijst, H. J., and Woodhouse, J. H. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184(3), 1223-1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x

Rost, S., and Thomas, C. (2002). Array seismology: Methods and applications. Rev. Geophys., 40(3), 2-1-2-27. https://doi.org/10.1029/2000rg000100

Rost, S., and Thomas, C. (2009). Improving seismic resolution through array processing techniques. Surv. Geophys., 30(4-5), 271-299. https://doi.org/10.1007/s10712-009-9070-6

Schimmel, M., and Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int., 130(2), 497-505. https://doi.org/10.1111/j.1365-246X.1997.tb05664.x

Schmerr, N. C., Kelly, B. M., and Thorne, M. S. (2013). Broadband array observations of the 300 km seismic discontinuity. Geophys. Res. Lett., 40(5), 841-846. https://doi.org/10.1002/grl.50257

Sharp, W. D., and Clague, D. A. (2006). 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science, 313(5791), 1281-1284. https://doi.org/10.1126/science.1128489

Shen, X. Z., Yuan, X. H., and Li, X. Q. (2014). A ubiquitous low-velocity layer at the base of the mantle transition zone. Geophys. Res. Lett., 41(3), 836-842. https://doi.org/10.1002/2013GL058918

Tibi, R., and Wiens, D. A. (2005). Detailed structure and sharpness of upper mantle discontinuities in the Tonga subduction zone from regional broadband arrays. J. Geophys. Res. 110(B6), B06313. https://doi.org/10.1029/2004jb003433

Vidale, J. E., and Benz, H. M. (1992). Upper-mantle seismic discontinuities and the thermal structure of subduction zones. Nature, 356(6371), 678-683. https://doi.org/10.1038/356678a0

Vinnik, L., Niu, F. L., and Kawakatsu, H. (1998). Broadband converted phases from midmantle discontinuities. Earth Planets Space, 50(11-12), 987-997. https://doi.org/10.1186/bf03352193

Wang, R. J. (1999). A simple orthonormalization method for stable and efficient computation of Green's functions. Bull. Seismol. Soc. Am., 89(3), 733-741.

Wessel, P., and Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos, Trans. Amer. Geophys. Union., 79(47), 579. https://doi.org/10.1029/98EO00426

Williams, Q., and Revenaug, J. (2005). Ancient subduction, mantle eclogite, and the 300 km seismic discontinuity. Geology, 33(1), 1-4. https://doi.org/10.1130/g20968.1

Woodland, A., Knapp, N., and Klimm, K. (2014). Can subducted eclogite be the petrologic explanation for the X-discontinuity?. In EGU General Assembly Conference Abstracts. Vienna, Austria: EGU.

Woodland, A. B. (1998). The orthorhombic to high-P monoclinic phase transition in Mg-Fe Pyroxenes: Can it produce a seismic discontinuity?. Geophys. Res. Lett., 25(8), 1241-1244. https://doi.org/10.1029/98gl00857

Wortel, M. J. R., and Spakman, W. (2000). Subduction and slab detachment in the Mediterranean-Carpathian Region. Science, 290(5498), 1910-1917. https://doi.org/10.1126/science.290.5498.1910

Xie, C. X., Zhou, Y. Z., Wang, Z. J., and Ou, D. X. (2012). Evidence of SdP conversion phases for the 300 km discontinuity beneath Tonga-Fiji region. Chinese J. Geophys. (in Chinese), 55(5), 1591-1600. https://doi.org/10.6038/j.issn.0001-5733.2012.05.017

Yang, Z. T., and He, X. B. (2015). Oceanic crust in the mid-mantle beneath west-central Pacific subduction zones: evidence from S to P converted waveforms. Geophys. J. Int., 203(1), 541-547. https://doi.org/10.1093/gji/ggv314

Zang, S. X., Chen, Q. Y., Ning, J. Y., Shen, Z. K., and Liu, Y. G. (2002). Motion of the Philippine Sea plate consistent with the NUVEL-1A model. Geophys. J. Int., 150(3), 809-819. https://doi.org/10.1046/j.1365-246X.2002.01744.x

Zang, S. X., Zhou, Y. Z., Ning, J. Y., and Wei, R. Q. (2006). Multiple discontinuities near 660 km beneath Tonga area. Geophys. Res. Lett., 33(20), L20312. https://doi.org/10.1029/2006GL027262

Zhang, Z., and Lay, T. (1993). Investigation of upper mantle discontinuities near Northwestern Pacific Subduction Zones using precursors to sSH. J. Geophys. Res., 98(B3), 4389-4405. https://doi.org/10.1029/92jb02050

Zhao, D. P., Mishra, O. P., and Sanda, R. (2002). Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet Inter., 132(4), 249-267. https://doi.org/10.1016/S0031-9201(02)00082-1

Zhou, Y. Z., Yu, X. W., Yang, H., and Zang, S. X. (2012). Multiplicity of the 660-km discontinuity beneath the Izu-Bonin area. Phys. Earth Planet. Inter. 198-199, 51-60. https://doi.org/10.1016/j.pepi.2012.03.003


ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()

Figures And Tables

Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou