Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

2018, 2(3): 231-237. doi: 10.26464/epp2018022

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause

1. 

Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China

2. 

Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA

Corresponding author: Qiu-Gang Zong, qgzong@pku.edu.cn

Received Date: 2018-04-24
Web Publishing Date: 2018-05-01

Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles. For reconnection to occur, the frozen-in condition must break down in a localized region, commonly called the ‘diffusion region’. In Earth’s magnetosphere, ion diffusion regions have already been observed, while electron diffusion regions have not been detected due to their small scales (of the order of a few km) (Paschmann, 2008). In this paper we report, for the first time, in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth’s high-latitude magnetopause. The electron diffusion region is characterized by nongyrotropic electron distribution, strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets. Also observed were multiple micro-scale flux ropes, with a scale size of about 5 c/ωpe (12 km, with c/ωpe the electron inertial length), that are crucial for electron acceleration in the guide-field reconnection process (Drake et al., 2006a). The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.

Key words: electron diffusion region, magnetic reconnection, high-latitude magnetopause

Argall, M. R., Paulson, K., Alm, L., Rager, A., Dorelli, J., Shuster, J., Wang, S., Torbert, R. B., Vaith, H., … Ahmadi, N. (2018). Electron dynamics within the electron diffusion region of asymmetric reconnection. J. Geophys. Res. Space Phys., 123(1), 146–162. https://doi.org/10.1002/2017JA024524

Bale, S. D., Mozer, F. S., and Phan, T. (2002). Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause. Geophys. Res. Lett., 29(24), 33-1–33-4. https://doi.org/10.1029/2002GL016113

Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L. J., Moore, T. E., Ergun, R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., … Chandler, M. (2016). Electron-scale measurements of magnetic reconnection in space. Science, 352(6290), aaf2939. https://doi.org/10.1126/science.aaf2939

Drake, J. F., Swisdak, M., Cattell, C., Shay, M. A., Rogers, B. N., and Zeiler, A. (2003). Formation of electron holes and particle energization during magnetic reconnection. Science, 299(5608), 873–877. https://doi.org/10.1126/science.1080333

Drake, J. F., Swisdak, M., Che, H., and Shay, M. A. (2006a). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443(7111), 553–556. https://doi.org/10.1038/nature05116

Drake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N., and Kobayashi, S. (2006b). Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett., 33(13), L13105. https://doi.org/10.1029/2006GL025957

Drake, J. F., and Shay, M. A. (2007). Basic theory of collisionless reconnection. In Birn, J., Priest, E. R. (Eds.), Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations (pp. 87–107). Cambridge, UK: Cambridge University Press.222

Eastwood, J. P., Shay, M. A., Phan, T. D., and Øieroset, M. (2010). Asymmetry of the ion diffusion region Hall electric and magnetic fields during guide field reconnection: Observations and comparison with simulations. Phys. Rev. Lett., 104(20), 205001. https://doi.org/10.1103/PhysRevLett.104.205001

Eriksson, S., Wilder, F. D., Ergun, R. E., Schwartz, S. J., Cassak, P. A., Burch, J. L., Chen, L. J., Torbert, R. B., Phan, T. D., … Marklund, G. T. (2016). Magnetospheric multiscale observations of the electron diffusion region of large guide field magnetic reconnection. Phys. Rev. Lett., 117(1), 015001. https://doi.org/10.1103/PhysRevLett.117.015001

Fu, X. R., Lu, Q. M., and Wang, S. (2006). The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas, 13(1), 012309. https://doi.org/10.1063/1.2164808

Giovanelli, R. G. (1947). Magnetic and electric phenomena in the Sun's atmosphere associated with sunspots. Mon. Not. R. Astron. Soc., 107(4), 338–355. https://doi.org/10.1093/mnras/107.4.338

Hesse, M., Schindler, K., Birn, J., and Kuznetsova, M. (1999). The diffusion region in collisionless magnetic reconnection. Phys. Plasmas, 6(5), 1781–1795. https://doi.org/10.1063/1.873436

Hesse, M., Kuznetsova, M., and Hoshino, M. (2002). The structure of the dissipation region for component reconnection: Particle simulations. Geophys. Res. Lett., 29(12), 4-1–4-4. https://doi.org/10.1029/2001GL014714

Huang, C., Lu, Q. M., and Wang, S. (2010). The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection. Phys. Plasmas, 17(7), 072306. https://doi.org/10.1063/1.3457930

Huba, J. D. (2005). Hall magnetic reconnection: Guide field dependence. Phys. Plasmas, 12(1), 012322. https://doi.org/10.1063/1.1834592

Kleva, R. G., Drake, J. F., and Waelbroeck, F. L. (1995). Fast reconnection in high temperature plasmas. Phys. Plasma, 2(1), 23–34. https://doi.org/10.1063/1.871095

Lu, Q. M., Huang, C., Xie, J. L., Wang, R. S., Wu, M. Y., Vaivads, A., and Wang, S. (2010). Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations. J. Geophys. Res., 115(A11), A11208. https://doi.org/10.1029/2010JA015713

Lu, S., Lu, Q. M., Cao, Y., Huang, C., Xie, J. L., and Wang S. (2011). The effects of the guide field on the structures of electron density depletions in collisionless magnetic reconnection. Chin. Sci. Bull., 56(1), 48–52. https://doi.org/10.1007/s11434-010-4250-9

Mozer, F. S., Bale, S. D., and Phan, T. D. (2002). Evidence of diffusion regions at a subsolar magnetopause crossing. Phys. Rev. Lett., 89(1), 015002. https://doi.org/10.1103/PhysRevLett.89.015002

Mozer, F. S., Bale, S. D., McFadden, J. P., and Torbert, R. B. (2005). New features of electron diffusion regions observed at subsolar magnetic field reconnection sites. Geophys. Res. Lett., 32(24), L24102. https://doi.org/10.1029/2005GL024092

Øieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., and Lepping, R. P. (2001). In situ detection of collisionless reconnection in the Earth's magnetotail. Nature, 412(6845), 414–417. https://doi.org/10.1038/35086520

Oka, M., Phan, T. D., Øieroset, M., and Angelopoulos, V. (2016). In situ evidence of electron energization in the electron diffusion region of magnetotail reconnection. J. Geophys. Res., 121(3), 1955–1968. https://doi.org/10.1002/2015JA022040

Paschmann, G., Sonnerup, B. U. Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russel, C. T., and Elphic, R. C. (1979). Plasma acceleration at the Earth's magnetopause: evidence for reconnection. Nature, 282(5736), 243–246. https://doi.org/10.1038/282243a0

Paschmann, G. (2008). Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett., 35(19), L19109. https://doi.org/10.1029/2008GL035297.

Peng, F. Z., Fu, H. S., Cao, J. B., Graham, D. B., Chen, Z. Z., Cao, D., Xu, Y., Huang, S. Y., Wang, T. Y., … Burch, J. L. (2017). Quadrupolar pattern of the asymmetric guide–field reconnection. J. Geophys. Res., 122(6), 6349–6356. https://doi.org/10.1002/2016JA023666

Phan, T. D., Drake, J. F., Shay, M. A., Mozer, F. S., and Eastwood, J. P. (2007). Observational evidence for an elongated (>50 ion skin depths) electron diffusion region during fast magnetic reconnection. Phys. Rev. Lett., 99(25), 255002. https://doi.org/10.1103/PhysRevLett.99.255002

Pritchett, P. L. (2001). Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. J. Geophys. Res., 106(A3), 3783–3798. https://doi.org/10.1029/1999JA001006

Ricci, P., Brackbill, J. U., Daughton, W., and Lapenta, G. (2004). Collisionless magnetic reconnection in the presence of a guide field. Phys. Plasmas, 11(8), 4102–4114. https://doi.org/10.1063/1.1768552

Robert, P., Dunlop, M. W., Roux, A., and Chanteur, G. (1998). Accuracy of current density determination. In Paschmann, G., and Daly, P. W. (Eds.), Analysis Methods for Multi Spacecraft Data (pp. 395). Bern, Switzerland: ESA.222

Rogers, B. N., Denton, R. E., Drake, J. F., and Shay, M. A. (2001). Role of Dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett., 87(19), 195004. https://doi.org/10.1103/PhysRevLett.87.195004

Scudder, J., and Daughton, W. " Illuminating” electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy. J. Geophys. Res., 113(A6), A06222. https://doi.org/10.1029/2008JA013035222

Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E. (2001). Alfvénic collisionless magnetic reconnection and the Hall term. J. Geophys. Res., 106(A3), 3759–3772. https://doi.org/10.1029/1999JA001007

Sonnerup, B. U. Ö., and Cahill, L. J. Jr. (1967). Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res, 72(1), 171–183. https://doi.org/10.1029/JZ072i001p00171

Tanaka, M. (1996). Asymmetry and thermal effects due to parallel motion of electrons in collisionless magnetic reconnection. Phys. Plasmas, 3(11), 4010–4017. https://doi.org/10.1063/1.871573

Vaivads, A., Khotyaintsev, Y., André, M., Retinò, A., Buchert, S. C., Rogers, B. N., Décréau, P., Paschmann, G., and Phan, T. D. (2004). Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett., 93(10), 105001. https://doi.org/10.1103/PhysRevLett.93.105001

Wang, R. S., Lu, Q. M., Huang, C., and Wang, S. (2010a). Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection. J. Geophys. Res., 115(A1), A01209. https://doi.org/10.1029/2009JA014553

Wang, R. S., Lu, Q. M., Du, A. M., and Wang, S. (2010b). In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons. Phys. Rev. Lett., 104(17), 175003. https://doi.org/10.1103/PhysRevLett.104.175003

Wang, R. S., Nakamura, R., Lu, Q. M., Du, A. M., Zhang, T. L., Baumjohann, W., Khotyaintsev, Y. V., Volwerk, M., André, M., … Lu, S. (2012). Asymmetry in the current sheet and secondary magnetic flux ropes during guide field magnetic reconnection. J. Geophys. Res., 117(A7), A07223. https://doi.org/10.1029/2011JA017384

Wang, R. S., Lu, Q. M., Nakamura, R., Huang, C., Du, A. M., Guo, F., Teh, W., Wu, M. Y., Lu, S., and Wang, S. (2016). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys., 12(3), 263–267. https://doi.org/10.1038/nphys3578

Wilken, B., Zong, Q. G., Daglis, I. A., Doke, T., Livi, S., Maezawa, K., Pu, Z. Y., Ullaland, S., and Yamamoto, T. (1995). Tailward flowing energetic oxygen ion bursts associated with multiple flux ropes in the distant magnetotail: GEOTAIL observations. Geophys. Res. Lett., 22(23), 3267–327. https://doi.org/10.1029/95GL02980

Zhang, H., Zong, Q. G., Fritz, T. A., Fu, S. Y., Schaefer, S., Glassmeier, K. H., Daly, P. W., Rème, H., and Balogh, A. (2008). Cluster observations of collisionless Hall reconnection at high–latitude magnetopause. J. Geophys. Res., 113(A3), A03204. https://doi.org/10.1029/2007JA012769

Zhang, Y. C., Lavraud, B., Dai, L., Wang, C., Marchaudon, A., Avanov, L., Burch, J., Chandler, M., Dorelli, J., … Torbert, R. (2017). Quantitative analysis of a Hall system in the exhaust of asymmetric magnetic reconnection. J. Geophys. Res., 122(5), 5277–5289. https://doi.org/10.1002/2016JA023620

Zong, Q. G., Fritz, T. A., Spence, H., Dunlop, M., Pu, Z. Y., Korth, A., Daly, P. W., Balogh, A., and Reme, H. (2003). Bursty energetic electrons confined in flux ropes in the cusp region. Planet. Space Sci., 51(12), 821–830. https://doi.org/10.1016/S0032-0633(03)00116-8

Zong, Q. G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H., Lui, A. T., Vogiatzis, I., Glassmeier, K. H., … Reme, H. (2004). Cluster observations of earthward flowing plasmoid in the tail. Geophys. Res. Lett., 31(18), L18803. https://doi.org/10.1029/2004GL020692

Zong, Q. G., Fritz, T. A., Spence, H., Zhang, H., Huang, Z. Y., Pu, Z. Y., Glassmeier, K.-H., Korth, A., Daly, P. W., …. Reme, H. (2005). Plasmoid in the high latitude boundary/cusp region observed by Cluster. Geophys. Res. Lett., 32(1), L01101. https://doi.org/10.1029/2004GL020960

[1]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[2]

ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007

[3]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[4]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[5]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[6]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[7]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[8]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[9]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[10]

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030

[11]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[12]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[13]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[14]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[15]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[16]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[17]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[18]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[19]

Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang, 2020: A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements, Earth and Planetary Physics, 4, 266-273. doi: 10.26464/epp2020031

[20]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause

Qiu-Gang Zong, Hui Zhang