Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

2018, 2(3): 238-246. doi: 10.26464/epp2018023

PLANETARY SCIENCE

Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1

1. 

College of Applied Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China

2. 

School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China

Corresponding author: JianKun Zhao, martin1945@ecit.cnQingXian Zhang, shinecore@163.com

Received Date: 2017-10-27
Web Publishing Date: 2018-05-01

A map of the average atomic number of lunar rock and soil can be used to differentiate lithology and soil type on the lunar surface. This paper establishes a linear relationship between the average atomic number of lunar rock or soil and the flux of position annihilation radiation (0.512-MeV gamma-ray) from the lunar surface. The relationship is confirmed by Monte Carlo simulation with data from lunar rock or soil samples collected by Luna (Russia) and Apollo (USA) missions. A map of the average atomic number of the lunar rock and soil on the lunar surface has been derived from the Gamma-Ray Spectrometer data collected by Chang’e-1, an unmanned Chinese lunar-orbiting spacecraft. In the map, the higher average atomic numbers (ZA > 12.5), which are related to different types of basalt, are in the maria region; the highest ZA (13.2) readings are associated with Sinus Aestuum. The middle ZA (~12.1) regions, in the shape of irregular oval rings, are in West Oceanus Procellarum and Mare Frigoris, which seems to be consistent with the distribution of potassium, rare earth elements, and phosphorus as a unique feature on the lunar surface. The lower average atomic numbers (ZA < 11.5) are found to be correlated with the anorthosite on the far side of the Moon.

Key words: average atomic number, Lunar rock and soil, positron annihilation radiation, Monte Carlo simulation, Chang’e-1 Gamma-ray spectrometer

Byrne, P. K., Klimczak, C., McGovern, P. J., Mazarico, E., James, P. B., Neumann, G. A., Zuber, M. T., and Solomon, S. C. (2015). Deep-seated thrust faults bound the Mare Crisium lunar mascon. Earth Planet. Sci. Lett., 427, 183–190. https://doi.org/10.1016/j.jpgl.2015.06.022

Delano, J. W., and Ringwood, A. E. (1978). Siderophile elements in the lunar highlands-nature of the indigenous component and implications for the origin of the Moon. In Proceedings of the 9th Lunar and Planetary Science Conference (pp. 111–159). New York: Pergamon Press.222

Dymek, R. F. (1986). Characterization of the Apollo 15 feldspathic basalt suite. In Workshop on the Geology and Petrology of the Apollo 15 Landing Site (pp. 52–57). Houston, TX: Lunar and Planetary Institute.222

Elphic, R. C., Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Maurice, S., Binder, A. B., and Lucey, P. G. (1998). Lunar Fe and Ti abundances: comparison of lunar prospector and clementine data. Science, 281(5382), 1493–1496. https://doi.org/10.1126/science.281.5382.1493

Elphic, R. C., Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Maurice, S., Binder, A. B., and Lucey, P. G. (2000). Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. J. Geophys. Res., 105(E8), 20333–20345. https://doi.org/10.1029/1999JE001176

Elphic, R. C., Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Gasnault, O. M., Maurice, S., Lucey, P. G., Blewett, D. T., and Binder, A. B. (2002). Lunar Prospector neutron spectrometer constraints on TiO2. J. Geophys. Res., 107(E4), 8-1–8-9. https://doi.org/10.1029/2000JE001460

Feldman, W. C., Barraclough, B. L., Maurice, S., Elphic, R. C., Lawrence, D. J., Thomsen, D. R., and Binder, A. B. (1998). Major compositional units of the moon: lunar prospector thermal and fast neutrons. Science, 281(5382), 1489–1493. https://doi.org/10.1126/science.281.5382.1489

Feldman, W. C., Gasnault, O., Maurice, S., Lawrence, D. J., Elphic, R. C., Lucey, P. G., and Binder, A. B. (2002). Global distribution of lunar composition: New results from Lunar Prospector. J. Geophys. Res., 107(E3), 5-1–5-14. https://doi.org/10.1029/2001JE001506

Freed, A. M., Johnson, B. C., Blair, D. M., Melosh, H. J., Neumann, G. A., Phillips, R. J., Solomon, S. C., Wieczorek, M. A., and Zuber, M. T. (2014). The formation of lunar mascon basins from impact to contemporary form. J. Geophys. Res., 119(11), 2378–2397. https://doi.org/10.1002/2014JE004657

Gasnault, O., Feldman, W. C., Maurice, S., Genetay, I., d’Uston, C., Prettyman, T. H., and Moore, K. R. (2001). Composition from fast neutrons: application to the moon. Geophys. Res. Lett., 28(19), 3797–3800. https://doi.org/10.1029/2001GL013072

Gurtner, M., Desorgher, L., Flückiger, E. O., and Moser, M. R. (2006). A Geant4 application to simulate the interaction of space radiation with the Mercurian environment. Adv. Space Res., 37(9), 1759–1763. https://doi.org/10.1016/j.asr.2004.12.015

Hasebe, N., Shibamura, E., Miyachi, T., Takashima, T., Kobayashi, M. N., Okudaira, O., Yamashita, N., Kobayashi, S., Karouji, Y., … Kim, K. J. (2009). First results of high performance Ge gamma-ray spectrometer onboard lunar orbiter SELENE (KAGUYA). J. Phys. Soc. Jpn., 78(Suppl. A), 18–25. https://doi.org/10.1143/JPSJS.78SA.18

Haskin, L. A. (1998). The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res., 103(E1), 1679–1689. https://doi.org/10.1029/97JE03035

Heiken, G. H., Vaniman, D. T., and French, B. M. (1991). Lunar Sourcebook: A User’s Guide to the Moon. Cambridge University Press.222

Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L., and Wieczorek, M. A. (2000). Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res., 105(E2), 4197–4216. https://doi.org/10.1029/1999je001103

Knoll, G. F. (2000). Radiation Detection and Measurement. New York: Wiley.222

Kobayashi, S., Karouji, Y., Morota, T., Takeda, H., Hasebe, N., Hareyama, M., Kobayashi, M., Shibamura, E., Yamashita, N., … Ishihara, Y. (2012). Lunar farside Th distributi on measured by Kaguya gamma-ray spectrometer. Earth Planet. Sci. Lett., 337-338, 10–16. https://doi.org/10.1016/j.jpgl.2012.05.007

Korotev, R. L., Jolliff, B. L., Zeigler, R. A., Gillis, J. J., and Haskin, L. A. (2003). Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim. Cosmochim. Acta, 67(24), 4895–4923. https://doi.org/10.1016/j.gca.2003.08.001

Lawrence, D. J., Feldman, W. C., Elphic, R. C., Little, R. C., Prettyman, T. H., Maurice, S., Lucey, P. G., and Binder, A. B. (2002). Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res., 107(E12), 13-11–13-26. https://doi.org/10.1029/2001JE001530

Li, C. L., Liu, J. J., Ren, X., Mou, L. L., Zou, Y. L., Zhang, H. B., Lü, C., Liu, J. Z., Zuo, W., … Ouyang, Z. Y. (2010 ). The global image of the Moon obtained by the Chang’E-1: Data processing and lunar cartography. Sci. China Earth Sci., 53(8), 1091–1102. https://doi.org/10.1007/s11430-010-4016-x

Ling, Z. C., Zhang, J., Liu, J. Z., Zhang, W. X., Zhang, G. L., Liu, B., Ren, X., Mu, L. J., Liu, J. J., and Li, C. L. (2011). Preliminary results of TiO2 mapping using Imaging Interferometer data from Chang’E-1. Chin. Sci. Bull., 56(20), 2082–2087. https://doi.org/10.1007/s11434-011-4550-8

Ma, T., Chang, J., Zhang, N., Cai, M. S., Gong, Y. Z., Tang, H. S., Zhang, R. J., Wang. N. S., Yu, M., … Liu, L. G. (2008). Gamma-ray detector on board lunar mission Chang’E-1. Adv. Space Res., 42(2), 347–349. https://doi.org/10.1016/j.asr.2007.04.042

McKay, G. A. (1986). Topic 2: Apollo 15 KREEP basalt. In Workshop on the Geology and Petrology of the Apollo 15 Landing Site (pp. 14–16). Houston, TX: Lunar and Planetary Institute.222

Melosh, H. J., Freed, A. M., Johnson, B. C., Blair, D. M., Andrews-Hanna, J. C., Neumann, G. A., Phillips, R. J., Smith, D. E., Solomon, S. C., … Zuber, M. T. (2013). The origin of lunar mascon basins. Science, 340(6140), 1552–1555. https://doi.org/10.1126/science.1235768

Miljković, K., Wieczorek, M. A., Collins, G. S., Solomon, S. C., Smith, D. E., Zuber, M. T. (2015). Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth Planet. Sci. Lett., 409, 243–251. https://doi.org/10.1016/j.jpgl.2014.10.041

Montesi, L. G. J. (2013). Solving the mascon mystery. Science, 340(6140), 1535–1536. https://doi.org/10.1126/science.1238099

Norman, M. D., and Ryder, D. (1980). Geochemical constraints on the igneous evolution of the lunar crust. In Proceedings of the 11th Lunar and Planetary Science Conference (pp. 317–331). New York: Pergamon Press.222

Ohishi, M., Mori, M., and Walker, W. (2004). Gamma-ray spectra due to cosmic-ray interactions with dense gas clouds. Astrophys. J., 610(2), 868–875. https://doi.org/10.1086/421732

Ouyang, Z. Y., Li, C. L., Zou, Y. L., Zhang, H. B., Lü, C., Liu, J. Z., Liu, J. J., Zuo, W., Su, Y., … Gao, G. N. (2011). Primary scientific results of Chang’E-1 lunar mission. Sci. China Earth Sci., 53(11), 1565–1581. https://doi.org/10.1007/s11430-010-4056-2

Phillips, R. J., and Lambeck, K. (1980). Gravity fields of the terrestrial planets: Long-wavelength anomalies and tectonics. Rev. Geophys. Space Phys., 18(1), 27–76. https://doi.org/10.1029/RG018i001p00027

Reedy, R. C. (1978). Planetary gamma-ray spectroscopy. In Proceedings of the 9th Lunar Science Conference (pp. 2961–2984). New York: Pergamon Press.222

Reedy, R. C. (2000). Predicting the production rates of cosmogenic nuclides. Nucl. Instrum. Methods Phys. Res. B, 172(1-4), 782–785. https://doi.org/10.1016/S0168-583X(00)00107-5

Reedy, R. C. (2013). Cosmogenic-nuclide production rates: reaction cross section update. Nucl. Instrum. Methods Phys. Res. B, 294, 470–474. https://doi.org/10.1016/j.nimb.2011.08.034

Taylor, S. R. (1982). Planetary science: a lunar perspective. Houston: Lunar and Planetary Institute.222

Taylor, S. R., Taylor, G. J., and Taylor, L. A. (2006). The moon: a Taylor perspective. Geochim. Cosmochim. Acta, 70(24), 5904–5918. https://doi.org/10.1016/j.gca.2006.06.262

Taylor, S. R. (2014). The Moon re-examined. Geochim. Cosmochim. Acta, 141, 670–676. https://doi.org/10.1016/j.gca.2014.06.031

Thorey, C., Michaut, C., and Wieczorek, M. (2015). Gravitational signatures of lunar floor-fractured craters. Earth Planet. Sci. Lett., 424, 269–279. https://doi.org/10.1016/j.jpgl.2015.04.021

Warren, P. H. (1993). A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral., 78, 360–376.

Warren, P. H. (2005). " New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon. Meteorit. Planet. Sci., 40(3), 477–506. https://doi.org/10.1111/j.1945-5100.2005.tb00395.x

Wise, D. U., and Yates, M. T. (1970). Mascons as structural relief on a lunar ‘moho’. J. Geophys. Res., 75(2), 261–268. https://doi.org/10.1029/JB075i002p00261

Yamashita, N., Hasebe, N., Miyachi, T., Kobayashi, M., Okudaira, O., Kobayashi, S., Ishizaki, T., Sakurai, K., Miyajima, M., … Gasnault, O. (2008). Complexities of gamma-ray line intensities from the lunar surface. Earth Planets Space, 60(4), 313–319. https://doi.org/10.1186/BF03352796

Yan, B. K., Xiong, S. Q., Wu, Y. Z., Wang, Z. C., Dong, L. N., Gan, F. P., Yang, S. M., and Wang, R. S. (2012). Mapping Lunar global chemical composition from Chang’E-1 IIM data. Planet. Space Sci., 67(1), 119–129. https://doi.org/10.1016/j.pss.2012.03.010

Yang, J., Ge, L. Q., Xiong, S. Q., Zhang, Q. X., and Gu, Y. (2013). Global distribution analysis of potassium on lunar surface using CE1-GRS data. At. Energy Sci. Technol. (in Chinese), 47(8), 1417–1421. https://doi.org/10.7538/yzk.2013.47.08.1417

Zhang, Q. X., Ge, L. Q., Gu, Y., Lin, Y. C., Zeng, G. Q., and Yang, J. (2012). Background estimation based on Fourier Transform in the energy-dispersive X-ray fluorescence analysis. X-Ray Spectrom., 41(2), 75–79. https://doi.org/10.1002/xrs.2360

Zhu, M. H., Ma, T., and Chang, J. (2010). Chang’E-1 gamma ray spectrometer and preliminary radioactive results on the lunar surface. Planet. Space Sci., 58(12), 1547–1554. https://doi.org/10.1016/j.pss.2010.07.022

Zhu, M. H., Ma, T., Chang, J., Tang, Z. S., Ip, W. H., and Xu, A. A. (2011). Lunar potassium distribution: Results from Chang’E-1 gamma ray spectrometer. Sci. China Phys. Mech. Astron., 54(11), 2083–2090. https://doi.org/10.1007/s11433-011-4491-x

Zhu, M. H., Chang, J., Ma, T., Ip, W. H., Fa, W. Z., Wu, J., Cai, M. S., Gong, Y. Z., Hu, Y. M., … Tang, Z. S. (2013). Potassium map from Chang ’ E-2 constraints the impact of crisium and orientale basin on the moon. Sci. Rep., 3, 1611. https://doi.org/10.1038/srep01611

Zhu, M. H., Chang, J., Xie, M. G., Fritz J., Fernandes, V. A., Ip, W. H., Ma, T., and Xu, A. (2015). The uniform K distribution of the mare deposits in the Orientale Basin: Insights from Chang’E-2 gamma-ray spectrometer. Earth Planet. Sci. Lett., 418, 172–180. https://doi.org/10.1016/j.jpgl.2014.11.009

[1]

XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005

[2]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[3]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[4]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[5]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu