Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

2018, 2(4): 292-302. doi: 10.26464/epp2018027


Optimization of the Mars ionospheric radio occultation retrieval


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: XinAn Yue,

Received Date: 2018-05-22
Web Publishing Date: 2018-07-01

Electron density is a key parameter to characterize Martian ionospheric structure and dynamics. Based on the ephemeris and auxiliary information derived from the Spacecraft, Planet, Instruments, C-matrix, and Events (SPICE) toolkit, we calculated the bending angle of signal path from the frequency residuals measured by the Mars Express Radio Science Experiment (MaRS) of the Mars Express (MEX) mission under the assumption of a spherically symmetric ionosphere. We stratified the ionosphere into layers and assumed a linear change of bending angle between layers, to derive profiles in radial distance of refractivity with the optimized parameters of upper integral limit of 4890 km and baseline correction boundary of 3690 km. Meanwhile, we also compared the retrieved electron density profiles between the frequency residuals of the single-frequency and differential Doppler of the dual-frequency. In total, ~640 electron density profiles of Martian ionosphere between April 2004 and April 2015 were retrieved successfully. There are 24 profiles identified manually that exhibit an additional sporadic layer occurrence below the normal two-layers. We also found that the peak altitude of this layer increases with the main peak altitude.

Key words: Mars, ionosphere, radio occultation, electron density

Bougher, S. W., Engel, S., Hinson, D. P., and Murphy, J. R. (2004). MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res., 109(E3), E03010.

Bullen, K. E. (1966). Implications of the revised mars radius. Nature, 211(5047), 396.

Cahoy, K. L., Hinson, D. P., and Tyler, G. L. (2006). Radio science measurements of atmospheric refractivity with Mars Global Surveyor. J. Geophys. Res., 111(E5), E05003.

Chicarro, A., Martin, P., and Trautner, R. (2004). The Mars Express mission: an overview. Mars Express the Scientific Payload, 1240: 3–13.

Fjeldbo, G., and Eshleman, V. R. (1965). The bistatic radar-occultation method for the study of planetary atmospheres. J. Geophys. Res., 70(13), 3217–3225.

Fjeldbo, G., and Eshleman, V. R. (1969). Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci., 4(10), 879–897.

Fjeldbo, G., Kliore, A. J., and Seidel, B. (1970). The mariner 1969 occultation measurements of the upper atmosphere of Mars. Radio Sci., 5(2), 381–386.

Fjeldbo, G., Kliore, A. J., and Eshleman, V. R. (1971). The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J., 76, 123–140.

Fox, J. L. (2004). Advances in the aeronomy of Venus and Mars. Adv. Space Res., 33(2), 132–139.

Grandin, M., Blelly, P., Witasse, O., and Marchaudon, A. (2015). Mars Express radio-occultation data: A novel analysis approach. J. Geophys. Res.:Space Phys., 119(12), 10621–10632.

Haider, S. A., and Mahajan, K. K. (2014). Lower and upper ionosphere of Mars. Space Sci. Rev., 182(1–4), 19–84.

Hantsch, M. H., and Bauer, S. J. (1990). Solar control of the Mars ionosphere. Planet Space Sci., 38(4), 539–542.

Healy, S. B. (2001). Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study. J. Geophys. Res., 106(D11), 11875–11889.

Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res.: Planets, 104(E11), 26997–27012.

Jiang, X. Q., Yang, B., Li, S. (2018). Overview of China’s 2020 Mars mission design and navigation. Astrodynamics, 2018, 2(1): 1-11.

Kliore, A., Dan, L. C., Levy, G. S., Eshleman, V. R., Fjeldbo, G., and Drake, F. D. (1965). Occultation experiment: results of the first direct measurement of Mars's atmosphere and ionosphere. Science, 149(3689), 1243–1248.

Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., and Rasoo, S. I. (1972). Mariner 9 S-Band Martian occultation experiment: initial results on the atmosphere and topography of Mars. Science, 175(4019), 313–317.

Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear, R. T., and Michael Jr, W. H.(1979). Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking. J. Geophys. Res.:Solid Earth, 84(B14), 8443–8456.

Marissa, F. V., Withers, P., Fallows, K., Flynn, C. L., Andrews, D. J., Duru, F., and Morgan, D. D. (2016). Electron densities in the ionosphere of Mars: A comparison of MARSIS and radio occultation measurements. J. Geophys. Res.:Space Phys., 121(10), 10241–10257.

Michael Jr, W. H., Cain, D. L., Fjeldbo, G., Davies, J. G., Grossi, M. D., Shapiro, I. I., and Tyler, G. L. (1972). Radio science experiments: The Viking Mars orbiter and Lander. Icarus, 16(1), 57–73.

Molina-Cuberos, G. J., Witasse, O., Lebreton, J. P., Rodrigo, R.,and López-Moreno, J. J. (2003). Meteoric ions in the atmosphere of Mars. Planet. Space Sci., 51(3), 239–249.

Pätzold, M., Neubauer, F. M., Carone, L., Hagermann, A., Stanzel1, C., Häusler, B., Remus, S., Selle, J., Hagl, D., … Dehant, V. (2004). MaRS: Mars express orbiter radio science. Mars Express the Scientific Payload, 1240: 141–163.

Pätzold, M., Tellmann, S., Häusler, B., Hinson, D.,Schaa, R., and Tyler, G. L. (2005). A Sporadic Third Layer in the Ionosphere of Mars. Science, 310(5749), 837–839.

Pätzold, M., Tellmann, S., Andert, T., Carone, L., Fels, M., Schaa, R., Stanzel, C., Audenrieth-Kersten, I., Gahr, A., … Twicken, J. (2009). MaRS: Mars express radio science experiment. ESA SP-1291: 217–245.

Pätzold, M., Häusler, B., Tyler, G. L., Andert, T., Asmar, S. W., Bird, M. K., Dehant, V., Hinson, D. P., Rosenblatt, P., … Remus, S. (2016). Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS). Planet. Space Sci., 127: 44–90.

Peter, K., Pätzold, M., Molina-Cuberos, G., Witasse, O., González-Galindo, F., Withers, P., Bird, M. K., Häusler, B., Hinson, D. P., … Tyler, G. L. (2014). The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus, 233: 66–82.

Sánchezcano, B., Witasse, O., Herraiz, M., Radicella, S. M., Bauer, J., Blelly, P. L., and Rodríguez-Caderot, G. (2012). Retrieval of ionospheric profiles from the Mars Express MARSIS experiment data and comparison with radiooccultation data. Geosci. Instrum. Method Data Syst., 1(1), 77–84.

Withers, P., Mendillo, M., Hinson, D. P., and Cahoy, K. (2008). Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment. J. Geophys. Res.:Space Phys., 113(A12), A12314.

Withers, P., (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307.

Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res., 117(A12), A12307.

Withers, P., Christou, A. A., and Vaubaillon, J. (2013). Meteoric ion layers in the ionospheres of Venus and Mars: Early observations and consideration of the role of meteor showers. Adv. Space Res., 52(7), 1207–1216.

Withers, P., Moore, L., Cahoy, K., and Beerer, I. (2014). How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties. Planet. Space Sci., 101, 77–88.

Withers, P., Weiner, S., and Ferreri, N. R. (2015). Recovery and validation of Mars ionospheric electron density profiles from Mariner 9. Earth Planets Space, 67,194.

Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res., 95(A10), 17095–17102.

Zhang, S. J., Ping, J. S., Han, T. T., Mao, X. F., and Hong, Z. J. (2011). Implementation of the Earth-based planetary radio occultation inversion technique. Sci. China Phys. Mech. Astron., 54(7), 1359–1366.

Zhang, S. J., Cui, J., Guo, P., Li, J. L., Ping, J. S., Jian, N. C., and Zhang, K. F. (2015). Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements. Adv. Space Res., 55(9), 2177–2189.

Zou, H., Wang, J. S., and Nielsen, E. (2005). Effect of the seasonal variations in the lower atmosphere on the altitude of the ionospheric main peak at Mars. J. Geophys. Res.: Space Phys., 110(A9), A09311.

Zou, H., Wang, J. S., and Nielsen, E. (2006). Reevaluating the relationship between the Martian ionospheric peak density and the solar radiation. J. Geophys. Res.: Space Phys., 111(A7), A07305.

Zou, H., Lillis, R. J., Wang, J. S., and Nielsen, E. (2011). Determination of seasonal variations in the Martian neutral atmosphere from observations of ionospheric peak height. J. Geophys. Res.: Planets, 116(E9), E09004.

Zou, H., Ye, Y. G., Wang, J. S., Nielsen E., Cui J., and Wang X. D. (2016). A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars. J. Geophys. Res.: Space Phys., 121(4), 3464–3475.


MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029


Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics. doi: 10.26464/epp2020009


GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Optimization of the Mars ionospheric radio occultation retrieval

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan