Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

2018, 2(4): 292-302. doi: 10.26464/epp2018027


Optimization of the Mars ionospheric radio occultation retrieval


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: XinAn Yue, yuexinan@mail.iggcas.ac.cn

Received Date: 2018-05-22
Web Publishing Date: 2018-07-01

Electron density is a key parameter to characterize Martian ionospheric structure and dynamics. Based on the ephemeris and auxiliary information derived from the Spacecraft, Planet, Instruments, C-matrix, and Events (SPICE) toolkit, we calculated the bending angle of signal path from the frequency residuals measured by the Mars Express Radio Science Experiment (MaRS) of the Mars Express (MEX) mission under the assumption of a spherically symmetric ionosphere. We stratified the ionosphere into layers and assumed a linear change of bending angle between layers, to derive profiles in radial distance of refractivity with the optimized parameters of upper integral limit of 4890 km and baseline correction boundary of 3690 km. Meanwhile, we also compared the retrieved electron density profiles between the frequency residuals of the single-frequency and differential Doppler of the dual-frequency. In total, ~640 electron density profiles of Martian ionosphere between April 2004 and April 2015 were retrieved successfully. There are 24 profiles identified manually that exhibit an additional sporadic layer occurrence below the normal two-layers. We also found that the peak altitude of this layer increases with the main peak altitude.

Key words: Mars, ionosphere, radio occultation, electron density

Bougher, S. W., Engel, S., Hinson, D. P., and Murphy, J. R. (2004). MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res., 109(E3), E03010. https://doi.org/10.1029/2003JE002154

Bullen, K. E. (1966). Implications of the revised mars radius. Nature, 211(5047), 396. https://doi.org/10.1038/211396a0

Cahoy, K. L., Hinson, D. P., and Tyler, G. L. (2006). Radio science measurements of atmospheric refractivity with Mars Global Surveyor. J. Geophys. Res., 111(E5), E05003. https://doi.org/10.1029/2005JE002634

Chicarro, A., Martin, P., and Trautner, R. (2004). The Mars Express mission: an overview. Mars Express the Scientific Payload, 1240: 3–13. http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=35549

Fjeldbo, G., and Eshleman, V. R. (1965). The bistatic radar-occultation method for the study of planetary atmospheres. J. Geophys. Res., 70(13), 3217–3225. https://doi.org/10.1029/JZ070i013p03217

Fjeldbo, G., and Eshleman, V. R. (1969). Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci., 4(10), 879–897. https://doi.org/10.1029/RS004i010p00879

Fjeldbo, G., Kliore, A. J., and Seidel, B. (1970). The mariner 1969 occultation measurements of the upper atmosphere of Mars. Radio Sci., 5(2), 381–386. https://doi.org/10.1029/RS005i002p00381

Fjeldbo, G., Kliore, A. J., and Eshleman, V. R. (1971). The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J., 76, 123–140. https://doi.org/10.1086/111096

Fox, J. L. (2004). Advances in the aeronomy of Venus and Mars. Adv. Space Res., 33(2), 132–139. https://doi.org/10.1016/j.asr.2003.08.014

Grandin, M., Blelly, P., Witasse, O., and Marchaudon, A. (2015). Mars Express radio-occultation data: A novel analysis approach. J. Geophys. Res.:Space Phys., 119(12), 10621–10632. https://doi.org/10.1002/2014JA020698

Haider, S. A., and Mahajan, K. K. (2014). Lower and upper ionosphere of Mars. Space Sci. Rev., 182(1–4), 19–84. https://doi.org/10.1007/s11214-014-0058-2

Hantsch, M. H., and Bauer, S. J. (1990). Solar control of the Mars ionosphere. Planet Space Sci., 38(4), 539–542. https://doi.org/10.1016/0032-0633(90)90146-H

Healy, S. B. (2001). Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study. J. Geophys. Res., 106(D11), 11875–11889. https://doi.org/10.1029/2001JD900050

Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res.: Planets, 104(E11), 26997–27012. https://doi.org/10.1029/1999JE001069

Jiang, X. Q., Yang, B., Li, S. (2018). Overview of China’s 2020 Mars mission design and navigation. Astrodynamics, 2018, 2(1): 1-11. https://doi.org/10.1007/s42064-017-0011-8

Kliore, A., Dan, L. C., Levy, G. S., Eshleman, V. R., Fjeldbo, G., and Drake, F. D. (1965). Occultation experiment: results of the first direct measurement of Mars's atmosphere and ionosphere. Science, 149(3689), 1243–1248. https://doi.org/10.1126/science.149.3689.1243

Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., and Rasoo, S. I. (1972). Mariner 9 S-Band Martian occultation experiment: initial results on the atmosphere and topography of Mars. Science, 175(4019), 313–317. https://doi.org/10.1126/science.175.4019.313

Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear, R. T., and Michael Jr, W. H.(1979). Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking. J. Geophys. Res.:Solid Earth, 84(B14), 8443–8456. https://doi.org/10.1029/JB084iB14p08443

Marissa, F. V., Withers, P., Fallows, K., Flynn, C. L., Andrews, D. J., Duru, F., and Morgan, D. D. (2016). Electron densities in the ionosphere of Mars: A comparison of MARSIS and radio occultation measurements. J. Geophys. Res.:Space Phys., 121(10), 10241–10257. https://doi.org/10.1002/2016JA022987

Michael Jr, W. H., Cain, D. L., Fjeldbo, G., Davies, J. G., Grossi, M. D., Shapiro, I. I., and Tyler, G. L. (1972). Radio science experiments: The Viking Mars orbiter and Lander. Icarus, 16(1), 57–73. https://doi.org/10.1016/0019-1035(72)90137-6

Molina-Cuberos, G. J., Witasse, O., Lebreton, J. P., Rodrigo, R.,and López-Moreno, J. J. (2003). Meteoric ions in the atmosphere of Mars. Planet. Space Sci., 51(3), 239–249. https://doi.org/10.1016/S0032-0633(02)00197-6

Pätzold, M., Neubauer, F. M., Carone, L., Hagermann, A., Stanzel1, C., Häusler, B., Remus, S., Selle, J., Hagl, D., … Dehant, V. (2004). MaRS: Mars express orbiter radio science. Mars Express the Scientific Payload, 1240: 141–163. http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=34889

Pätzold, M., Tellmann, S., Häusler, B., Hinson, D.,Schaa, R., and Tyler, G. L. (2005). A Sporadic Third Layer in the Ionosphere of Mars. Science, 310(5749), 837–839. https://doi.org/10.1126/science.1117755

Pätzold, M., Tellmann, S., Andert, T., Carone, L., Fels, M., Schaa, R., Stanzel, C., Audenrieth-Kersten, I., Gahr, A., … Twicken, J. (2009). MaRS: Mars express radio science experiment. ESA SP-1291: 217–245. http://www.esa.int/esapub/sp/sp1240/sp1240web.pdf

Pätzold, M., Häusler, B., Tyler, G. L., Andert, T., Asmar, S. W., Bird, M. K., Dehant, V., Hinson, D. P., Rosenblatt, P., … Remus, S. (2016). Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS). Planet. Space Sci., 127: 44–90. https://doi.org/10.1016/j.pss.2016.02.013

Peter, K., Pätzold, M., Molina-Cuberos, G., Witasse, O., González-Galindo, F., Withers, P., Bird, M. K., Häusler, B., Hinson, D. P., … Tyler, G. L. (2014). The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus, 233: 66–82. https://doi.org/10.1016/j.icarus.2014.01.028

Sánchezcano, B., Witasse, O., Herraiz, M., Radicella, S. M., Bauer, J., Blelly, P. L., and Rodríguez-Caderot, G. (2012). Retrieval of ionospheric profiles from the Mars Express MARSIS experiment data and comparison with radiooccultation data. Geosci. Instrum. Method Data Syst., 1(1), 77–84. https://doi.org/10.5194/gi-1-77-2012

Withers, P., Mendillo, M., Hinson, D. P., and Cahoy, K. (2008). Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment. J. Geophys. Res.:Space Phys., 113(A12), A12314. https://doi.org/10.1029/2008JA013636

Withers, P., (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.027

Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res., 117(A12), A12307. https://doi.org/10.1029/2012JA018185

Withers, P., Christou, A. A., and Vaubaillon, J. (2013). Meteoric ion layers in the ionospheres of Venus and Mars: Early observations and consideration of the role of meteor showers. Adv. Space Res., 52(7), 1207–1216. https://doi.org/10.1016/j.asr.2013.06.012

Withers, P., Moore, L., Cahoy, K., and Beerer, I. (2014). How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties. Planet. Space Sci., 101, 77–88. https://doi.org/10.1016/j.pss.2014.06.011

Withers, P., Weiner, S., and Ferreri, N. R. (2015). Recovery and validation of Mars ionospheric electron density profiles from Mariner 9. Earth Planets Space, 67,194. https://doi.org/10.1186/s40623-015-0364-2

Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res., 95(A10), 17095–17102. https://doi.org/10.1029/JA095iA10p17095

Zhang, S. J., Ping, J. S., Han, T. T., Mao, X. F., and Hong, Z. J. (2011). Implementation of the Earth-based planetary radio occultation inversion technique. Sci. China Phys. Mech. Astron., 54(7), 1359–1366. https://doi.org/10.1007/s11433-011-4247-7

Zhang, S. J., Cui, J., Guo, P., Li, J. L., Ping, J. S., Jian, N. C., and Zhang, K. F. (2015). Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements. Adv. Space Res., 55(9), 2177–2189. https://doi.org/10.1016/j.asr.2015.01.030

Zou, H., Wang, J. S., and Nielsen, E. (2005). Effect of the seasonal variations in the lower atmosphere on the altitude of the ionospheric main peak at Mars. J. Geophys. Res.: Space Phys., 110(A9), A09311. https://doi.org/10.1029/2004JA010963

Zou, H., Wang, J. S., and Nielsen, E. (2006). Reevaluating the relationship between the Martian ionospheric peak density and the solar radiation. J. Geophys. Res.: Space Phys., 111(A7), A07305. https://doi.org/10.1029/2005JA011580

Zou, H., Lillis, R. J., Wang, J. S., and Nielsen, E. (2011). Determination of seasonal variations in the Martian neutral atmosphere from observations of ionospheric peak height. J. Geophys. Res.: Planets, 116(E9), E09004. https://doi.org/10.1029/2005JA011580

Zou, H., Ye, Y. G., Wang, J. S., Nielsen E., Cui J., and Wang X. D. (2016). A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars. J. Geophys. Res.: Space Phys., 121(4), 3464–3475. https://doi.org/10.1002/2015JA022304


GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()

Figures And Tables

Optimization of the Mars ionospheric radio occultation retrieval

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan