<

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

2018, 2(4): 303-309. doi: 10.26464/epp2018028

PLANETARY SCIENCE

Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation

1. 

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Chi Wang, cw@spaceweather.ac.cn

Received Date: 2018-05-25
Web Publishing Date: 2018-07-01

We present preliminary results of a new global Magnetohydrodynamics (MHD) simulation model of the Jovian magnetosphere. The model incorporates mass loading from Jupiter's satellite Io, the planet's fast corotation, and electrostatic coupling between its magnetosphere and ionosphere (M-I coupling). The basic configuration of the Jovian magnetosphere including the equatorial plasma flow pattern, the corotation enforcement current system, and the field aligned currents (FACs) in the ionosphere are presented under an antiparallel interplanetary magnetic field (IMF) condition. The simulation model results for equatorial density and pressure profiles are consistent with results from data-based empirical models. It is also found that there are similarities between the FACs distribution in the ionosphere and the observed aurora features, showing the potential application of the simple ionospheric model to the complicated M-I coupling. This model will help deepen our understanding of the global dynamics of the Jovian magnetosphere.

Key words: Jupiter, magnetosphere, magnetohydrodynamic (MHD) simulation

Bagenal, F., and Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res., 116(A5), A05209. https://doi.org/10.1029/2010JA016294

Chané, E., Saur, J., and Poedts, S. (2013). Modeling Jupiter's magnetosphere: Influence of the internal sources. J. Geophys. Res., 118(5), 2157–2172. https://doi.org/10.1002/jgra.50258

Florinski, V., Guo, X., Balsara, D. S., and Meyer, C. (2013). Magnetohydrodynamic modeling of solar system processes on geodesic grids. Astrophys. J. Supp. Ser., 205(2), 19. https://doi.org/10.1088/0067-0049/205/2/19

Frank, L. A., Paterson, W. R., and Khurana, K. K. (2002). Observations of thermal plasmas in Jupiter's magnetotail. J. Geophys. Res., 107(A1), SIA 1-1–SIA 1-15. https://doi.org/10.1029/2001JA000077

Fukazawa, K., Ogino, T., and Walker, R. J. (2005). Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett., 32(3), L03202. https://doi.org/10.1029/2004GL021392

Guo, X. C. (2015). An extended HLLC Riemann solver for the magneto- hydrodynamics including strong internal magnetic field. J. Comput. Phys., 290, 352–363. https://doi.org/10.1016/j.jcp.2015.02.048

Guo, X. C., Florinski, V., and Wang, C. (2016). The HLLD Riemann solver based on magnetic field decomposition method for the numerical simulation of magneto-hydrodynamics. J. Comput. Phys., 327, 543–552. https://doi.org/10.1016/j.jcp.2016.09.057

Hill, T. W. (1979). Inertial limit on corotation. J. Geophys. Res., 84(A11), 6554–6558. https://doi.org/10.1029/JA084iA11p06554

Hu, Y. Q., Guo, X. C., and Wang, C. (2007). On the ionospheric and reconnection potentials of the earth: Results from global MHD simulations. J. Geophys. Res., 112(A7), A07215. https://doi.org/10.1029/2006JA012145

Jia, X. Z., Hansen, K. C., Gombosi, T. I., Kivelson, M. G., Tóth, G., DeZeeuw, D. L., and Ridley, A. J. (2012). Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation. J. Geophys. Res., 117(A5), A05225. https://doi.org/10.1029/2012JA017575

Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., and Ogino, T. (2002). Probabilistic models of the jovian magnetopause and bow shock locations. J. Geophys. Res., 107(A10), 1309. https://doi.org/10.1029/2001JA009146

Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., Mauk, B. H., and Kurth, W. S. (2004). The configuration of Jupiter's magnetosphere. In F. Bagenal, et al. (Eds.), Jupiter. The Planet, Satellites and Magnetosphere (pp. 593–616). Cambridge, UK: Cambridge University Press.

Krupp, N., Woch, J., Lagg, A., Roelof, E. C., Williams, D. J., Livi, S., and Wilken, B. (2001). Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere. Planet. Space Sci., 49(3-4), 283–289. https://doi.org/10.1016/S0032-0633(00)00149-5

Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., Mauk, B. H., Roelof, E. C., Williams, D. J., … and Paterson, W. R. (2004). Dynamics of the Jovian magnetosphere. In F. Bagenal, et al. (Eds.), Jupiter. The Planet, Satellites and Magnetosphere (pp. 617–638). Cambridge, UK: Cambridge University Press.

Li, S. T. (2005). An HLLC Riemann solver for magneto-hydrodynamics. J. Comput. Phys., 203(1), 344–357. https://doi.org/10.1016/j.jcp.2004.08.020

Mauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J., Krimigis, S. M., and Lagg, A. (2004). Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere. J. Geophys. Res., 109(A9), A09S12. https://doi.org/10.1029/2003JA010270

Miyoshi, T., and Kusano, K. (1997). MHD simulation of a rapidly rotating magnetosphere interacting with the external plasma flow. Geophys. Res. Lett., 24(21), 2627–2630. https://doi.org/10.1029/97GL52739

Miyoshi, T., and Kusano, K. (2001). A global MHD simulation of the Jovian magnetosphere interacting with/without the interplanetary magnetic field. J. Geophys. Res., 106(A6), 10723–10742. https://doi.org/10.1029/2000JA900153

Miyoshi, T., and Kusano, K. (2005). A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys., 208(1), 315–344. https://doi.org/10.1016/j.jcp.2005.02.017

Moriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., and Shimazu, H. (2008). Current systems in the Jovian magnetosphere. J. Geophys. Res., 113(A5), A05204. https://doi.org/10.1029/2007JA012751

Ogino, T., Walker, R. J., and Kivelson, M. G. (1998). A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res., 103(A1), 225–235. https://doi.org/10.1029/97JA02247

Palmaerts, B., Vogt, M. F., Krupp, N., Grodent, D., and Bonfond, B., (2017). Dawn-dusk asymmetries in Jupiter's magnetosphere. In: S. Haaland, et al. (Eds.), Dawn-Dusk Asymmetries in Planetary Plasma Environments (pp. 307–322). American Geophysical Union. https://doi.org/10.1002/9781119216346.ch24

Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., and De Zeeuw, D. L. (1999). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154(2), 284–309. https://doi.org/10.1006/jcph.1999.6299

Radioti, A., Gérard, J. C., Grodent, D., Bonfond, B., Krupp, N., and Woch, J. (2008). Discontinuity in Jupiter's main auroral oval. J. Geophys. Res., 113(A1), A01215. https://doi.org/10.1029/2007JA012610

Strobel, D. F., and Atreya, S. K. (1983). Ionosphere. In: Dessler, A. J. (Ed.), Physics of the Jovian Magnetosphere (pp. 51–67). New York: Cambridge University Press. https://doi.org/10.1006/jcph.1994.1071

Tanaka, T. (1994). Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J. Comput. Phys., 111(2), 381–390. https://doi.org/10.1006/jcph.1994.1071

Vasyliunas, V. M. (1983). Plasma distribution and flow. In A. J. Dessler, (Ed.), Physics of the Jovian Magnetosphere (pp. 395–453). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511564574

Walker, R. J., Ogino, T., and Kivelson, M. G. (2001). Magnetohydrodynamic simulations of the effects of the solar wind on the Jovian magnetosphere. Planet. Space Sci., 49(3-4), 237–245. https://doi.org/10.1016/S0032-0633(00)00145-8

Wang, C., Guo, X. C., Peng, Z., Tang, B. B., Sun, T. R., Li, W. Y., and Hu, Y. Q. (2013). Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere: A review. Sci. China: Earth Sci., 56(7), 1141–1157. https://doi.org/10.1007/s11430-013-4608-3

Welling, D. T., and Liemohn, M. W. (2014). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. J. Geophys. Res., 119(4), 2691–2705. https://doi.org/10.1002/2013JA019374

Woch, J., Krupp, N., Lagg, A., and Tomás, A. (2004). The structure and dynamics of the Jovian energetic particle distribution. Adv. Space Res., 33(11), 2030–2038. https://doi.org/10.1016/j.asr.2003.04.050

[1]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[2]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang