Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

2018, 2(4): 310-326. doi: 10.26464/epp2018029


Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data


Institute of Geophysics, China Earthquake Administration, Beijing 100081, China


Canada Center for Mapping and Earth Observation, Natural Resources Canada, Ottawa, K1A0E4, Canada


School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China


College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

Corresponding author: LiSheng Xu,

Received Date: 2018-05-09
Web Publishing Date: 2018-07-01

On November 13, 2016, an MW7.8 earthquake struck Kaikoura in South Island of New Zealand. By means of back-projection of array recordings, ASTFs-analysis of global seismic recordings, and joint inversion of global seismic data and co-seismic InSAR data, we investigated complexity of the earthquake source. The result shows that the 2016 MW7.8 Kaikoura earthquake ruptured about 100 s unilaterally from south to northeast (~N28°–33°E), producing a rupture area about 160 km long and about 50 km wide and releasing scalar moment 1.01×1021 Nm. In particular, the rupture area consisted of two slip asperities, with one close to the initial rupture point having a maximal slip value ~6.9 m while the other far away in the northeast having a maximal slip value ~9.3 m. The first asperity slipped for about 65 s and the second one started 40 s after the first one had initiated. The two slipped simultaneously for about 25 s. Furthermore, the first had a nearly thrust slip while the second had both thrust and strike slip. It is interesting that the rupture velocity was not constant, and the whole process may be divided into 5 stages in which the velocities were estimated to be 1.4 km/s, 0 km/s, 2.1 km/s, 0 km/s and 1.1 km/s, respectively. The high-frequency sources distributed nearly along the lower edge of the rupture area, the high-frequency radiating mainly occurred at launching of the asperities, and it seemed that no high-frequency energy was radiated when the rupturing was going to stop.

Key words: 2016 MW7.8 Kaikoura earthquake, back-projection of array recordings, ASTFs-analysis of global recordings, joint inversion of teleseismic and InSAR data, complexity of source

Ammon, C. J., Kanamori, H., Lay, T., and Velasco, A. A. (2006a). The 17 July 2006 Java tsunami earthquake. Geophys. Res. Lett., 33(24), L24308,

Ammon, C. J., Velasco, A. A., and Lay, T. (2006b). Rapid estimation of first-order rupture characteristics for large earthquakes using surface waves: 2004 Sumatra-Andaman earthquake. Geophys. Res. Lett., 33(14), L14314,

Antolik, M., and Dreger, D. S. (2003). Rupture process of the 26 January 2001 Mw 7.6 Bhuj, India, earthquake from teleseismic broadband data. Bull. Seismol. Soc. Am., 93(3), 1235–1248,

Avouac, J.-P., Meng, L. S., Wei, S. J., Wang, T., and Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci., 8(9), 708–711,

Bertero, M., Bindi, D., Boccacci, P., Cattaneo, M., Eva, C., and Lanza, V. (1997). Application of the projected Landweber method to the estimation of the source time function in seismology. Inverse Probl., 13(2), 465–486,

Cesca, S., Zhang, Y., Mouslopoulou, V., Wang, R., Saul, J., Savage, M., Heimann, S., Kufner, S. K., Oncken, O., and Dahm, T. (2017). Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth Planet. Scie. Lett., 478, 110–120,

Chen, Y. T., Zhou, J. Y., and Ni, J. C. (1991). Inversion of near-source-broadband accelerograms for the earthquake source-time function. Tectonophysics, 197(1), 89–98,

Delouis, B., Nocquet, J.-M., and Vallée, M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys. Res. Lett., 37(17), L17305,

DeMets, C., Gordon, R. G., and Argus, D. F. (2010). Geologically current plate motions. Geophys. J. Int., 181(1), 1–80,

Dreger, D. S. (1994). Investigation of the rupture process of the 28 June 1992 Landers earthquake utilizing TERRAscope. Bull. Seismol. Soc. Am., 84(3), 713–724.

Du, H. L. (2007). Analysis of the Energy Radiation Sources of the 2004 Sumatra-Andaman Earthquake Using Time-Domain Array Techniques [Master thesis]. Beijing: Institute of Geophysics, China Earthquake Administration.222

Du, H. L., Xu, L. S., and Chen, Y. T. (2009). Rupture process of the 2008 great Wenchuan earthquake from the analysis of the Alaska-array data. Chinese J. Geophys. (in Chinese), 52(2), 372–378.

Duputel, Z., and Rivera, L. (2017). Long-period analysis of the 2016 Kaikoura earthquake. Phys. Earth Planet. Inter., 265, 62–66,

Feng, W. P., Samsonov, S., Tian, Y. F., Qiu, Q., Li, P., Zhang, Y., Deng, Z. G., and Omari, K. (2017). Surface deformation associated with the 2015 Mw 8.3 Illapel earthquake revealed by satellite-based geodetic observations and its implications for the seismic cycle. Earth Planet. Sci. Lett., 460, 222–233,

Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., and Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophys. Res. Lett., 42(4), 1053–1060,

Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C. R., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., … Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science, 356(6334), eaam7194,

Hartzell, S. H., and Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 73(6), 1553–1583.

Helmberger, D., and Wiggins, R. A. (1971). Upper mantle structure of midwestern United States. J. Geophys. Res., 76(14), 3229–3245,

Hollingsworth, J., Ye, L. L., and Avouac, J.-P. (2017). Dynamically triggered slip on a splay fault in the Mw 7.8, 2016 Kaikoura (New Zealand) earthquake. Geophys. Res. Lett., 44(8), 3517–3525,

Ishii, M., Shearer, P. M., Houston, H., and Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936,

Kaiser, A., Balfour, N., Fry, B., Holden, C., Litchfield, N., Gerstenberger, M., D’Anastasio, E., Horspool, N., McVerry, G., ... Gledhill, K. (2017). The 2016 Kaikōura, New Zealand, earthquake: Preliminary seismological report. Seismol. Res. Lett., 88(3), 727–739,

Kennett, B. L. N., Engdahl, E. R., and Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1), 108–124,

Kennett, B. L. N., Gorbatov, A., and Spiliopoulos, S. (2014). Tracking high-frequency seismic source evolution: 2004 Mw 8.1 Macquarie event. Geophys. Res. Lett., 41(4), 1187–1193,

Kim, A., and Dreger, D. S. (2008). Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records. J. Geophys. Res., 113(B7), B07308,

Kiser, E., and Ishii, M. (2011). The 2010 Mw 8.8 Chile earthquake: Triggering on multiple segments and frequency-dependent rupture behavior. Geophys. Res. Lett., 38(7), L07301,

Koper, K. D., Hutko, A. R., Lay, T., Ammon, C. J., and Kanamori, H. (2011). Frequency-dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth Planet Space, 63(7), 599–602,

Krüger, F., and Ohrnberger, M. (2005). Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature, 435(7044), 937–939,

Kraeva, N. (2004). Tikhonov's regularization for deconvolution in the empirical Green function method and vertical directivity effect. Tectonophysics, 383(1-2), 29–44,

Langridge, R., Campbell, J., Hill, N., Pere, V., Pope, J., Pettinga, J., Estrada, B., and Berryman, K. (2003). Paleoseismology and slip rate of the Conway Segment of the Hope Faultat Greenburn Stream, South Island, New Zealand. Ann. Geophys., 46(5), 1119–1139,

Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., Van Dissen, R. J., Barrell, D. J. A., Rattenbury, M. S., Heron, D. W., Haubrock, S., … Stirling, M. W. (2016). The New Zealand active faults database. N Zeal. J. Geol. Geophys., 59(1), 86–96,

Lanza, V., Spallarossa, D., Cattaneo, M., Bindi, D., and Augliera, P. (1999). Source parameters of small events using constrained deconvolution with empirical Green’s functions. Geophys. J. Int., 137(3), 651–662,

Lay, T., Ammon, C. J., Hutko, A. R., and Kanamori, H. (2010). Effects of kinematic constraints on teleseismic finite-source rupture inversions: Great Peruvian earthquakes of 23 June 2001 and 15 August 2007. Bull. Seismol. Soc. Am., 100(3), 969–994,

Lay, T., Kanamori, H., Ammon, C. J., Hutko, A. R., Furlong, K., and Rivera, L. (2009). The 2006-2007 Kuril Islands great earthquake sequence. J. Geophys. Res., 114(11), B11308,

Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L. L., Yue, H., and Rushing, T. M. (2012). Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res., 117(B4), B04311,

Lay, T., and Wallace, T. C. (1995). Modern Global Seismology. San Diego, California: Academic Press.222

Lo, Y.-C., Zhao, L., Xu, X. W., Chen, J., and Hung, S.-H. (2018). The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications. Earth Planet. Phys., 2(2), 139–149,

Park, S., and Ishii, M. (2015). Inversion for rupture properties based upon 3-D directivity effect and application to deep earthquakes in the Sea of Okhotsk region. Geophys. J. Int., 203(2), 1011–1025,

Piana, M., and Bertero, M. (1997). Projected Landweber method and preconditioning. Inverse Probl., 13(2), 441–463,

Rawlinson, N., and Kennett, B. L. N. (2004). Rapid estimation of relative and absolute delay times across a network by adaptive stacking. Geophys. J. Int., 157(1), 332–340,

Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., Meng, L., Ampuero, J.-P., Wei, S., … Webb, F. H. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries. Science, 332(6036), 1421–1425,

Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R., Berryman, K., Barnes, P., Wallace, L., Villamor, P., … Jacobs, K. (2012). National seismic hazard model for New Zealand: 2010 update. Bull. Seismol. Soc. Am., 102(2), 1514–1542,

Uchide, T., Yao, H. J., and Shearer, P. M. (2013). Spatio-temporal distribution of fault slip and high-frequency radiation of the 2010 El Mayor-Cucapah, Mexico earthquake. J. Geophys. Res., 118(4), 1546–1555,

Vallée, M. (2004). Stabilizing the empirical Green function analysis: development of the projected Landweber method. Bull. Seismol. Soc. Am., 94(2), 394–409,

Wald, D. J., Heaton, T. H., and Hudnut, K. W. (1996). The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bull. Seismol. Soc. Am., 86(1B), S49-S70.

Wang, R. J. (1999). A simple orthonormalization method for stable and efficient computation of Green's functions. Bull. Seismol. Soc. Am., 89(3), 733–741.

Wang, R. J., Martín, F. L., and Roth, F. (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP. Comput. Geosci., 29(2), 195–207,

Xu, L. S., Chen, Y. T., Teng, T. L., and Patau, G. (2002). Temporal-spatial rupture process of the 1999 Chi-Chi earthquake from IRIS and GEOSCOPE long-period waveform data using aftershocks as empirical green's functions. Bull. Seismol. Soc. Am., 92(8), 3210–3228,

Xu, L. S., Zhang, X., Yang, C., and Li, C. L. (2014). Analysis of the Love waves for the source complexity of the Ludian MS 6.5 earthquake. Chinese J. Geophys. (in Chinese), 57(9), 3006–3017.

Yagi, Y., Mikumo, T., Pacheco, J., and Reyes, G. (2004). Source rupture process of the Tecomá́n, Colima, Mexico Earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bull. Seismol. Soc. Am., 94(5), 1795–1807,

Yagi, Y., Nakao, A., and Kasahara, A. (2012). Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth Planet. Sci. Lett., 355-356, 94–101,

Yao, H. J., Shearer, P. M., and Gerstoft, P. (2012). Subevent location and rupture imaging using iterative backprojection for the 2011 Tohoku Mw 9.0 earthquake. Geophys. J. Int., 190(2), 1152–1168,

Yao, H. J., Shearer, P. M., and Gerstoft, P. (2013). Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures. Proc. Nat. Acad. Sci. U.S.A., 110(12), 4512–4517,

Yue, H., Lay, T. & Koper, K. D. (2012). En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490(7419), 245–249,

Yue, H., Lay, T., Schwartz, S. Y., Rivera, L., Protti, M., Dixon, T. H., Owen, S., and Newman, A. V. (2013). The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. J. Geophys. Res., 118(10), 5453–5466,

Zhang, H., Koper, K. D., Pankow, K., and Ge, Z. X. (2017). Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults. Geophys. Res. Lett., 44(10), 4790–4798,

Zhang, X. (2016). Study on New Methods for Analysis of the Complexity of Source Rupture Process Based on Apparent Source Time Functions [Ph. D. thesis]. Beijing: Institute of Geophysics, China Earthquake Administration.222

Zhang, X., and Xu, L. S. (2015). Inversion of the apparent source time functions for the rupture process of the Nepal MS8.1 earthquake. Chinese J. Geophys. (in Chinese), 58(6), 1881–1890.

Zhang, X., Yan, C., and Xu, L. S. (2016). Analysis of the Love-waves for the rupture processes of the 2014 earthquake-doublet of Kangding, Sichuan. Chinese J. Geophys. (in Chinese), 59(7), 2453–2467,

Zhang, Y. (2008). Study on the Inversion Methods of Source Rupture Process. Beijing: Peking University.222

Zhang, Y., Xu, L. S., and Chen, Y.-T. (2012). Rupture process of the 2011 Tohoku earthquake from the joint inversion of teleseismic and GPS data. Earthquake Science, 25(2), 129–135,

Zhang, Y., Xu, L. S., and Chen, Y. T. (2009). PLD method for retrieving apparent source time function and its application to the 2005 Kashmir MW 7.6 earthquake. Chinese J. Geophys. (in Chinese), 52(3), 672–680.


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028


Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046


Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013


Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048


XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021


XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040


Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030


Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040


YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035


WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008


YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043


WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010


XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 527-537. doi: 10.26464/epp2018051


LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011


Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019


Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005


Quan-Zhi Ye, 2018: A preliminary analysis of the Shangri-La Bolide on 2017 Oct 4, Earth and Planetary Physics, , 170-172. doi: 10.26464/epp2018017


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li