Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics. doi: 10.26464/epp2018033

doi: 10.26464/epp2018033

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere

1. 

School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China

2. 

CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

3. 

Collaborative Innovation Center of Astronautical Science and Technology, University of Science and Technology of China, Hefei 230026, China

4. 

Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

5. 

Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire, USA

6. 

Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

7. 

Space Sciences Division, New Mexico Consortium, Los Alamos, New Mexico, USA

8. 

Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, USA

9. 

The Aerospace Corporation, Los Angeles, California, USA

10. 

ISR Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Corresponding author: ZhenPeng Su, szpe@mail.ustc.edu.cn

Received Date: 2018-07-05
Web Publishing Date: 2018-10-01

Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause. However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band (< 0.1fce). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.

Key words: exohiss, substorm injection, radiation belt, whistler-mode instability

Abel, B., and Thorne, R. M. (1998). Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. Geophys, J. Res., 103(A2), 2385–2396. https://doi.org/10.1029/97JA02919

Albert, J. M., Meredith, N. P., and Horne, R. B. (2009). Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J. Geophys. Res., 114(9), A09214. https://doi.org/10.1029/2009JA014336

Artemyev, A., Agapitov, O., Breuillard, H., Krasnoselskikh, V., and Rolland, G. (2012). Electron pitch-angle diffusion in radiation belts: The effects of whistler wave oblique propagation. Geophys. Res. Lett., 39(8), L08105. https://doi.org/10.1029/2012GL051393

Ashour-Abdalla, M., and Kennel, C. F. (1978). Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res., 83(A4), 1531–1543. https://doi.org/10.1029/JA083iA04p01531

Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R. Jr., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., … Zakrzewski, M. P. (2013). The magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Sci. Rev., 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8

Bortnik, J., Thorne, R. M., and Meredith, N. P. (2008). The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 452(7183), 62–66. https://doi.org/10.1038/nature06741

Bortnik, J., Li, W., Thorne, R. M., Angelopoulos, V., Cully, C., Bonnell, J., Le Contel, C., and Roux, A. (2009). An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science, 324(5928), 775–778. https://doi.org/10.1126/science.1171273

Cattell, C. A., Breneman, A. W., Thaller, S. A., Wygant, J. R., Kletzing, C., and Kurth, W. S. (2015). Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study. Geophys. Res. Lett., 42(18), 7273–7281. https://doi.org/10.1002/2015GL065565

Chen, L. J., Thorne, R. M., Jordanova, V. K., and Horne, R. B. (2010). Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res., 115(A11), A11222. https://doi.org/10.1029/2010JA015707

Chen, L. J., Thorne, R. M., Bortnik, J., Li, W., Horne, R. B., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., … Fennell, J. F. (2014). Generation of unusually low frequency plasmaspheric hiss. Geophys. Res. Lett., 41(16), 5702–5709. https://doi.org/10.1002/2014GL060628

De Boor, C. (1977). Package for calculating with B-Splines. SIAM J. Numer. Anal., 14(3), 441–472. https://doi.org/10.1137/0714026

Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., … Chen, J. (2013). Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci. Rev., 179(1-4), 423–484. https://doi.org/10.1007/s11214-013-9968-7

Gao, Z. L., Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., Shen, C., and Wang, S. (2016). Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons. Geophys. Res. Lett., 43(3), 967–977. https://doi.org/10.1002/2016GL067687

Golden, D. I., Spasojevic, M., and Inan, U. S. (2009). Diurnal dependence of ELF/VLF hiss and its relation to chorus at L = 2.4. J. Geophys. Res., 114(A5), A05212. https://doi.org/10.1029/2008JA013946

Golden, D. I., Spasojevic, M., and Inan, U. S. (2011). Determination of solar cycle variations of midlatitude ELF/VLF chorus and hiss via automated signal detection. J. Geophys. Res., 116(A3), A03225. https://doi.org/10.1029/2010JA016193

Green, J. L., Boardsen, S., Garcia, L., Taylor, W. W. L., Fung, S. F., and Reinisch, B. W. (2005). On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res., 110(A3), A03201. https://doi.org/10.1029/2004JA010495

Horne, R. B. (1989). Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation. J. Geophys. Res., 94(A7), 8895–8909. https://doi.org/10.1029/JA094iA07p08895

Horne, R. B., and Thorne, R. M. (1998). Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett., 25(15), 3011–3014. https://doi.org/10.1029/98GL01002

Horne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A., Smith, A. J., Kanekal, S. G., Baker, D. N., Engebretson, M. J., … Decreau, P. M. E. (2005). Wave acceleration of electrons in the Van Allen radiation belts. Nature, 437(7056), 227–230. https://doi.org/10.1038/nature03939

Kennel, C. (1966). Low-frequency whistler mode. Phys. Fluids, 9(11), 2190–2202. https://doi.org/10.1063/1.1761588

Kennel, C. F., and Engelmann, F. (1966). Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids, 9(12), 2377–2388. https://doi.org/10.1063/1.1761629

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6

Kurth, W. S., and Gurnett, D. A. (1991). Plasma waves in planetary magnetospheres. J. Geophys. Res., 96(S01), 18977–18991. https://doi.org/10.1029/91JA01819

Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., and Wygant, J. R. (2014). Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen Probes. J. Geophys. Res., 120(2), 904–914. https://doi.org/10.1002/2014JA020857

Li, W., Thorne, R. M., Angelopoulos, V., Bonnell, J. W., McFadden, J. P., Carlson, C. W., LeContel, O., Roux, A., Glassmeier, K. H., and Auster, H. U. (2009). Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. J. Geophys. Res., 114(A1), A00C14. https://doi.org/10.1029/2008JA013554

Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., … Thaller, S. A. (2013). An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons. Geophys. Res. Lett., 40(15), 3798–3803. https://doi.org/10.1002/grl.50787

Liu, N. G., Su, Z. P., Gao, Z. L., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N., … Wygant, J. R. (2017). Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure. Geophys. Res. Lett., 44(1), 52–61. https://doi.org/10.1002/2016GL071987

Liu, N. G., Su, Z. P., Zheng, H. N., Wang, Y. M., and Wang, S. (2018a). Prompt disappearance and emergence of radiation belt magnetosonic waves induced by solar wind dynamic pressure variations. Geophys. Res. Lett., 45(2), 585–594. https://doi.org/10.1002/2017GL076382

Liu, N. G., Su, Z. P., Zheng, H. N., Wang, Y. M., and Wang, S. (2018b). Magnetosonic harmonic falling and rising frequency emissions potentially generated by nonlinear wave-wave interactions in the Van Allen radiation belts. Geophys. Res. Lett. https://doi.org/10.1029/2018GL079232

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1-4), 3–27. https://doi.org/10.1007/s11214-012-9908-y

Ni, B. B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q. L., Chen, L. J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., … Claudepierre, S. G. (2014). Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophys. Res. Lett., 41(6), 1854–1861. https://doi.org/10.1002/2014GL059389

Nunn, D., Omura, Y., Matsumoto, H., Nagano, I., and Yagitani, S. (1997). The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code. J. Geophys. Res., 102(A12), 27083–27098. https://doi.org/10.1029/97JA02518

Omura, Y., Katoh, Y., and Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res., 113(A4), A04223. https://doi.org/10.1029/2007JA012622

Reinsch, C. H. (1967). Smoothing by spline functions. Numer. Mathem., 10(3), 177–183. https://doi.org/10.1007/BF02162161

Russell, C. T., Holzer, R. E., and Smith, E. J. (1969). OGO 3 observations of ELF noise in the magnetosphere: 1. Spatial extent and frequency of occurrence. J. Geophys. Res., 74(3), 755–777. https://doi.org/10.1029/JA074i003p00755

Santolík, O., Pickett, J. S., Gurnett, D. A., and Storey, L. R. O. (2002). Magnetic component of narrowband ion cyclotron waves in the auroral zone. J. Geophys. Res., 107(A12), SMP 17-1–SMP 17-14. https://doi.org/10.1029/2001JA000146

Santolík, O., Parrot, M., and Lefeuvre, F. (2003a). Singular value decomposition methods for wave propagation analysis. Radio Sci., 38(1), 1010. https://doi.org/10.1029/2000RS002523

Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M., and Cornilleau-Wehrlin, N. (2003b). Spatio-temporal structure of storm-time chorus. J. Geophys. Res., 108(A7), 1278. https://doi.org/10.1029/2002JA009791

Santolík, O., Pickett, J. S., Gurnett, D. A., Menietti, J. D., Tsurutani, B. T., and Verkhoglyadova, O. (2010). Survey of Poynting flux of whistler mode chorus in the outer zone. J. Geophys. Res., 115(A7), A00F13. https://doi.org/10.1029/2009JA014925

Santolík, O., Kletzing, C. A., Kurth, W. S., Hospodarsky, G., and Bounds, S. R. (2014). Fine structure of large-amplitude chorus wave packets. Geophys. Res. Lett., 41(2), 293–299. https://doi.org/10.1002/2013GL058889

Shprits, Y. Y., Thorne, R. M., Horne, R. B., Glauert, S. A., Cartwright, M., Russell, C. T., Baker, D. N., and Kanekal, S. G. (2006). Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm. Geophys. Res. Lett., 33(5), L05104. https://doi.org/10.1029/2005GL024256

Shprits, Y. Y., Subbotin, D., and Ni, B. B. (2009). Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J. Geophys. Res., 114(A11), A11209. https://doi.org/10.1029/2008JA013784

Solomon, J., Cornilleau-Wehrlin, N., Korth, A., and Kremser, G. (1988). An experimental study of ELF/VLF hiss generation in the earth’s magnetosphere. J. Geophys. Res., 93(A3), 1839–1847. https://doi.org/10.1029/JA093iA03p01839

Sonwalkar, V. S., and Inan, U. S. (1989). Lightning as an embryonic source of VLF hiss. J. Geophys. Res., 94(A6), 6986–6994. https://doi.org/10.1029/JA094iA06p06986

Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H., … Thorne, R. M. (2013). Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen probes mission. Space Sci. Rev., 179(1-4), 311–336. https://doi.org/10.1007/s11214-013-0007-5

Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2010). STEERB: A three-dimensional code for storm-time evolution of electron radiation belt. J. Geophys. Res., 115(A9), A09208. https://doi.org/10.1029/2009JA015210

Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2011). Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J. Geophys. Res., 116(A4), A04205. https://doi.org/10.1029/2010JA016228

Su, Z. P., Xiao, F. L., Zheng, H. N., He, Z. G., Zhu, H., Zhang, M., Shen, C., Wang, Y. M, Wang, S., … Baker, D. N. (2014a). Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes. Geophys. Res. Lett., 41(2), 229–235. https://doi.org/10.1002/2013GL058912

Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., He, Z. G., Shen, C., Shen, C. L., Wang, C. B., … Wygant, J. R. (2014b). Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons. J. Geophys. Res., 119(6), 4266–4273. https://doi.org/10.1002/2014JA019919

Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., Shen, C., Zhang, M., Wang, S., Kletzing, C. A., …Wygant, J. R. (2015). Disappearance of plasmaspheric hiss following interplanetary shock. Geophys. Res. Lett., 42(9), 3129–3140. https://doi.org/10.1002/2015GL063906

Su, Z. P., Gao, Z. L., Zhu, H., Li, W., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., … Wygant, J. R. (2016). Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J. Geophys. Res., 121(7), 6400–6416. https://doi.org/10.1002/2016JA022546

Su, Z. P., Liu, N. G., Zheng, H. N., Wang, Y. M., and Wang, S. (2018). Large-amplitude extremely low frequency hiss waves in plasmaspheric plumes. Geophys. Res. Lett., 45(2), 565–577. https://doi.org/10.1002/2017GL076754

Summers, D., Thorne, R. M., and Xiao, F. L. (1998). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res., 103(A9), 20487–20500. https://doi.org/10.1029/98JA01740

Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., and Anderson, R. R. (2002). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophys. Res. Lett., 29(24), 27-1–27-4. https://doi.org/10.1029/2002GL016039

Summers, D., Tong, R. S., and Thorne, R. M. (2009). Limit on stably trapped particle fluxes in planetary magnetospheres. J. Geophys. Res., 114(A10), A10210. https://doi.org/10.1029/2009JA014428

Summers, D., Omura, Y., Nakamura, S., and Kletzing, C. A. (2014). Fine structure of plasmaspheric hiss. J. Geophys. Res., 119(11), 9134–9149. https://doi.org/10.1002/2014JA020437

Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E. (1973). Plasmaspheric hiss. J. Geophys. Res., 78(10), 1581–1596. https://doi.org/10.1029/JA078i010p01581

Thorne, R. M., Church, S. R., and Gorney, D. J. (1979). On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause. J. Geophys. Res., 84(A9), 5241–5247. https://doi.org/10.1029/JA084iA09p05241

Thorne, R. M. (2010). Radiation belt dynamics: The importance of wave-particle interactions. Geophys. Res. Lett., 37(22), L22107. https://doi.org/10.1029/2010GL044990

Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Baker, D. N., Spence, H. E., Reeves, G. D., … Kanekal, S. G. (2013). Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 504(7480), 411–414. https://doi.org/10.1038/nature12889

Tsyganenko, N. A., and Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res., 110(A3), A03208. https://doi.org/10.1029/2004JA010798

Tu, W. C., Cunningham, G. S., Chen, Y., Morley, S. K., Reeves, G. D., Blake, J. B., Baker, D. N., and Spence, H. (2014). Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes. Geophys. Res. Lett., 41(5), 1359–1366. https://doi.org/10.1002/2013GL058819

Varotsou, A., Boscher, D., Bourdarie, S., Horne, R. B., Meredith, N. P., Glauert, S. A., and Friedel, R. H. (2008). Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J. Geophys. Res., 113(A12), A12212. https://doi.org/10.1029/2007JA012862

Yang, C., Su, Z. P., Xiao, F. L., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N., … Funsten, H. O. (2016). Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus. Geophys. Res. Lett., 43(16), 8339–8347. https://doi.org/10.1002/2016GL070194

Zhu, H., Su, Z. P., Xiao, F. L., Zheng, H. N., Wang, Y. M., Shen, C., Xian, T., Wang, S., Kletzing, C. A., … Baker, D. N. (2015). Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons. Geophys. Res. Lett., 42(4), 1012–1019. https://doi.org/10.1002/2014GL062964

[1]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[2]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten