Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

2018, 2(6): 455-461. doi: 10.26464/epp2018043


Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite


State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China


Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

Corresponding author: Bin Zhou, Li,

Received Date: 2018-08-23
Web Publishing Date: 2018-11-01

The High Precision Magnetometer (HPM) on board the China Seismo-Electromagnetic Satellite (CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM (Fluxgate Magnetometer) and CDSM (Coupled Dark State Magnetometer) probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.

Key words: China Seismo-Electromagnetic Satellite (CSES), High Precision Magnetometer (HPM), fluxgate magnetometer, CPT magnetometer, data processing

Chen, S. W. (2009). Control and measure of satellite magnetic cleanliness. Prog. Geophys(in Chinese) , 24(2), 797–800.

Cheng, B. J., Zhou, B., Magnes W, Lammegger, R., and Pollinger, A. (2018). High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci., 61(5), 659–668.

Friis-Christensen, E., Lühr, H., Hulot G. (2006). Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space, 58(4), 351–358.

Lammegger, R. (2008). Method and device for measuring magnetic fields, WIPO, Patent WO/2008/151344.222

Liu, J. C. and Zhu, Z. (2012). Explanation and Implementation of the IAU 2000/2006 Resolutions on Fundamental Astronomy. Progr. Astron.(in Chinese) , 30(4), 411–437

Mandea, M. (2006). Magnetic Satellite Missions: Where have we been and where are we going?. C. R. Geosci., 338(14-15), 1002–1011.

Merayo, J. M. G., Brauer, P., Primdahl, F., Petersen, J. R., and Nielsen, O. V. (2000). Scalar calibration of vector magnetometers. Measur. Sci. Technol., 11(2), 120–132.

Olsen, N., Lühr, H., Mandea, M., Rother, M., Tøffner-Clausen, L., and Choi, S. (2006). CHAOS-a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. Int., 166(1), 67–75.

Olsen, N., Tøffner-Clausen, L., Sabaka, T. J., Brauer, P., Merayo, J. M. G., Jörgensen, J. L., Léger, J. M., Nielsen, O. V., Primdahl, F., and Risbo, T. (2003). Calibration of the Ørsted vector magnetometer. Earth Planets Space, 55(1), 11–18.

Pollinger, A., Lammegger, R., Magnes W, Hagen, C., Ellmeier, M., Jernej, I., Leichtfried, M., Kürbisch, C., Maierhofer, R., Baumjohann, W. (2018). Coupled Dark State Magnetometer for the China Seismo-Electromagnetic Satellite. Measur. Sci. Technol., 29(9).

Potemra, T. A., Mobley, F. F., and Eckard, L. D. (1980). The geomagnetic field and its measurement: introduction and magnetic field satellite (Magsat) glossary. APL Tech. Dig., 1, 162–170

Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J. P., Zhu, X. H., Piergiorgio, P., and Dai, J. P. (2018). The State-of-the-Art of the China Seismo-Electromagnetic Satellite Mission. Sci. China Technol. Sci., 61(5), 634–642.

Xiao, Q., Geng, X. L., Chen, J. G., Meng, L. F., Li, N., and Zhang, Y. J. (2018). Calibration methods of the interference magnetic field for Low Earth Orbit (LEO) magnetic satellite. Chinese J. Geophys.(in Chinese) , 61(8), 3134–3138.

Yin, F. (2010). Mathematic Approaches for the Calibration of the CHAMP Satellite Magnetic Field Measurements. Potsdam: Universität Potsdam.222

Yin, F., Lühr, H., Rauberg, J., Michaelis, I., and Cai, H. T. (2013). Characterization of CHAMP magnetic data anomalies: magnetic contamination and measurement timing. Measur. Sci. Technol., 24(7), 445–455.

Zhang, Z. Q., Li, L., Zhou, B., and Zhang, Y. T. (2014). A method of in-orbit calibration of fluxgate magnetometer based on the measurement of absolute scalar magnetometer. Satellite. Chin. Space Sci. Technol.(in Chinese) , 34(2), 235–241.

Zhou, B., Cheng, B. J., and Zhang, Y. T. (2018). The Earth magnetic field exploration mission of China seismo-electromagnetic satellite. J. Remote Sens.(in Chinese) (S1), 1993–2002.

Zhou, B. and Wang, J. D. (2013). Influence of Magnetic Component Distribution of Satellite on Eliminating Remanant Magnetic Field by Gradient Method. Chin. Space Science and Technology(in Chinese) , 33(5), 29–34.


Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044


JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042


Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047


XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041


Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049


Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037


Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046


Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048


HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029


XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006


Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009


XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 527-537. doi: 10.26464/epp2018051


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022


Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics. doi: 10.26464/epp2019021


Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li