Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045

2018, 2(6): 469-478. doi: 10.26464/epp2018045

SPACE PHYSICS

The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results

1. 

Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

2. 

Key Laboratory of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

3. 

Lanzhou Institute of Physics, China Academy of Space Technology, Gansu 730000, China

4. 

Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

5. 

DFH Satellite Co., Ltd., Beijing 100094, China

6. 

Institute of Disaster Prevention, Hebei 101601, China

Corresponding author: JianPing Huang, xhhjp@126.comJunGang Lei, lei7412@163.com

Received Date: 2018-10-05
Web Publishing Date: 2018-11-01

Previous studies have reported that, before or after occurrences of strong earthquakes, some low earth orbit satellites recorded ionospheric disturbances, including electromagnetic emissions and plasma fluctuations over the epicenter region or its conjugate point. Theoretically speaking, due to some electromagnetic coupling effect, electromagnetic emissions from the earthquake preparation zone could propagate from the lithosphere to the atmosphere, and could reach the ionosphere, even up to the inner magnetosphere. This paper introduces the electric field detector (EFD) onboard the ZhangHeng-1 satellite (ZH-1). The EFD is designed to measure electric field fluctuations within the broad frequency range of DC to 3.5 MHz, divided into 4 channels: ULF (DC–16 Hz), ELF (6 Hz–2.2 kHz), VLF (1.8 kHz–20 kHz) and HF (18 kHz–3.5 MHz). The sampling rates of the channels are 125 Hz, 5 kHz, 50 kHz and 10 MHz, respectively. The EFD includes 4 spherical probes mounted on a over 4.5 m boom and an electronic box inside the satellite module. The resolution of the EFD is 1 μV·m-1·Hz-1/2 at frequencies from DC to 16 Hz, and the sensitivity is 0.1 μV·m-1·Hz-1/2 at frequencies from 6 Hz to 2.2 kHz, 0.05 μV·m-1·Hz-1/2 in the band 1.8 kHz to 20 kHz, and 0.1μV·m-1·Hz-1/2 from 20 kHz to 3.5 MHz. The dynamic range from DC to 20 kHz is over 120 dB, and over 96 dB from 20 kHz to 3.5 MHz. The EFD has two observation modes: survey mode and burst mode. The survey mode concentrates primarily on electric field power density values; the burst mode provides high sampling rate waveform data. The detailed configuration of the EFD onboard the ZH-1 is also introduced in this paper. During the six months’ orbit test phase, the EFD recorded a number of natural electromagnetic emissions. Preliminary analysis of these data suggests that the EFD performs well onboard the ZH-1 and is meeting the requirements of the scientific objectives of ZH-1.

Key words: EFD, payload, ZhangHeng-1, sensitivity

Berthelier, J. J., Godefroy, M., Leblanc, F., Malingre, M., Menvielle, M., Lagoutte, D., Brochot, J. Y., Elie, C. F., Legendre, C., … Pfaff, R. (2005). ICE, the electric field experiment on DEMETER. Planetary and Space Science, 54(5), 456–471. https://doi.org/10.1016/j.pss.2005.10.016

Bhattacharya, S., Sarkar, S., Gwal, A. K., Parrot, M. (2007). Observations of ULF/ELF anomalies detected by DEMETER satellite prior to earthquakes. Indian Journal of Radio & Space Physics., 36(2), 103–113. http://nopr.niscair.res.in/handle/123456789/4700222

Biagi, P. F., Piccolo, R., Ermini, A., Martellucci, S., Bellecci, C., Hayakawa, M., Capozzi, V., Kingsley, S. P. (2001). Possible earthquake precursors revealed by LF radio signals. Nat. Hazards Earth Syst. Sci., 1(1-2), 99–104. https://doi.org/10.5194/nhess-1-99-2001

Fraser-Smith, A.C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A., Villard, Jr. O. G. (1990). Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys. Res. Lett., 17, 1465–1468. https://doi.org/10.1029/GL017i009p01465

Hayakawa, M., Kasahara, Y., Nakamura, T., Muto, F., Horie, T., Maekawa, S., Hobara, Y., Rozhnoi, A. A., Solovieva, M., Molchanov, O. A. (2010). A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res., 115(A9), A09305. https://doi.org/10.1029/2009JA015143

Kasahara, Y., Muto, F., Horie, T., Yoshida, M., Hayakawa, M., Ohta, K., Rozhnoi, A., Solovieva, M., Molchanov, O. A. (2008). On the statistical correlation between the ionospheric perturbations as detected by subionospheric VLF/LF propagation anomalies and earthquakes. Nat. Hazards Earth Syst. Sci., 8(4), 653–656. https://doi.org/10.5194/nhess-8-653-2008

Maekawa, S., Horie, T., Yamauchi, T., Sawaya, T., Ishikawa, M., Hayakawa, M., Sasaki, H. (2006). A statistical study on the effect of earthquakes on the ionosphere, based on the subionospheric LF propagation data in Japan. Ann. Geophys., 24(8), 2219–2225. https://doi.org/10.5194/angeo-24-2219-2006

Molchanov, O. A., Mazhaeva, O. A., Goliavin, A. N., Hayakawa. (1993). Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquake. Ann. Geophs., 11, 431–440

Ouyang, X. Y., and Shen, X. H. (2015). A method for pre-processing ULF electric field disturbances observed by DEMETER and its case application analysis. Acta Seismol. Sin.(in Chinese) , 37(5), 820–829. https://doi.org/10.11939/jass.2015.05.010

Parrot, M. (1995). Use of satellites to detect seismo-electromagnetic effects. Advances. in Space Research, 15(11), 271337–351347. https://doi.org/10.1016/0273-1177(95)00072-M

Rozhnoi, A., Solovieva, M., Molchanov, O., Biagi, P. -F., Hayakawa, M., Schwingenschuh, K., Boudjada, M., Parrot, M. (2010). Variations of VLF/LF signals observed on the ground and satellite during a seismic activity in Japan region in May–June 2008. Nat. Hazards Earth Syst. Sci., 10(3), 529–534. https://doi.org/10.5194/nhess-10-529-2010

Sarkar, S., and Gwal, A. K. (2010). Satellite monitoring of anomalous effects in the ionosphere related to the great Wenchuan earthquake of May 12, 2008. Nat. Hazards, 55(2), 321–332. https://doi.org/10.1007/s11069-010-9530-9

Shen, X. H., Zhima, Z, Zhao, S. F., Qian, G., Ye, Q., Ruzhin, Y. (2017). VLF radio wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake. Advances. in Space Research., 59(10), 2636–2644. https://doi.org/10.1016/j.asr.2017.02.040

Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J. P., Zhu, X. H., Piergiorgio, P., Dai, J. P. (2018). The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci., 8, 61(5), 634–642. https://doi.org/10.1007/s11431-018-9242-0

Surkov, V. V., Molchanov, O. A., Hayakawa, M. (2003). Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismomagnetic phenomena during microfracturing. Journal of Atmospheric and Solar- Terrestrial Physics, 65(1), 31–46. https://doi.org/10.1016/S1364-6826(02)00117-7

Takano, T., Yamada, A., Sakai, K., Higasa, H., Shimakura, S. (2002). Enhancements of electromagnetic broadband noise in 50 MHz band which possibly associate with earthquakes. J. Atmos. Electr., 22(1), 23–324

Yamada, A., Sakai, K., Yaji, Y., Takano, T., Shimakura, S. (2002). Observations of natural noise in VHF band which relates to earthquakes. In: Hayakawa, M., and Molchanov, O. A. (Eds.), Seismo Electromagnetics (Lithosphere-Atmosphere-Ionosphere Coupling) (pp. 255–257). Tokyo: Terra Scientific Publishing Company, Tokyo, 255–257.222

Zeren Z. M., Cao, J. B., Liu, W. L., Fu, H. S., Wang, T. Y., Zhang, X. M., Shen, X. H. (2014). Storm time evolution of ELF/VLF waves observed by DEMETER satellite. J. Geophys. Res.:Space Physics, 119(4), 2612–2622. https://doi.org/10.1002/2013JA019237

Zeren Z. M., Chen, L. J., Xiong, Y., Cao, J. B., Fu, H. S. (2017). On the origin of ionospheric hiss: a conjugate observation. J. Geophys. Res.:Space Physics, 122(11), 784–793. https://doi.org/10.1002/2017JA024803

Zeren Z. M., Shen, X. H., Cao, J. B., Zhang, X. M., Huang, J. P., Liu, J., Ouyang, X. Y., Zhao, S. F. (2012). Statistical analysis of ELF/VLF magnetic field disturbances before major earthquakes. Chinese J. Geophys.(in Chinese) , 55(11), 3699–3708

Zhang, X., Shen, X. M., Parrot, M., Zeren, Z., Ouyang, X., Liu, J., Qian, J., Zhao, S., Miao, Y. (2012). Phenomena of electrostatic perturbations before strong earthquake (2005-2010) observed on DEMETER. Nat. Hazards Earth Syst Sci., 12(1), 75–83. https://doi.org/10.5194/nhess-12-75-2012

Zhang, X., Shen, X. H., Zhao, S. F., Lu, Yao., Ouyang, X. Y., Qian, J. D. (2014). The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes. Journal of Asian Earth Sciences, 79(A), 42–52. https://doi.org/10.1016/j.jseaes.2013.08.026

Zhang, X., Zeren, Z., Parrot, M., Battiston, R., Qian, J., Shen, X. (2011). ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Advances in Space Research, 47(6), 991–1000. https://doi.org/10.1016/j.asr.2010.11.001

[1]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[2]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results

JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu