Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics. doi: 10.26464/epp2018052

doi: 10.26464/epp2018052

SPACE PHYSICS

A study on the energetic electron precipitation observed by CSES

1. 

Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

2. 

Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

Corresponding author: YaLu Wang, wangyalu310@163.comXueMin Zhang, zhangxm96@126.com

Received Date: 2018-08-16
Web Publishing Date: 2018-12-01

High energy particles are the main target of satellite space exploration; particle storm events are closely related to solar activity, cosmic ray distribution, and magnetic storms. The commonly seen energetic particle (electron) precipitation anomalous structures include mainly the inner and outer Van Allen radiation belts, the South Atlantic anomaly, and the anomalous stripes excited by artificial electromagnetic waves. The China Seismo-Electromagnetic Satellite (CESE), launched in February of 2018, provides a platform for studying ionospheric particle disturbances. This paper reports the first studies of electron precipitation phenomenon based on high energy particle data from the CSES satellite. We find that the global distribution of electrons in the low energy band (0.1–3 MeV) can relatively well reflect the structure of the anomalous precipitation belt, which is consistent with results based on data from the DEMETER satellite, indicating that the quality of the low-energy band data from the energetic particle instrumentation of the CSES satellite is good. In addition, this paper makes an in-depth study of the electron precipitation belt excited by the NWC artificial VLF electromagnetic wave transmitter located in Australia, which appears as a typical wisp structure on the energy spectrum. The magnetic shell parameter L corresponding to the precipitation belt ranges from 1.44 to 1.74, which is close to the L value (~1.45) of the Australian NWC transmitter; the energy of the precipitation electrons is between 100 keV and 361.57 keV, among which the precipitation of 213.73 keV electrons is most conspicuous.

Key words: CSES satellite, VLF, Electron precipitation, DEMETER satellite, L shell.

Abel, B., and Thorne, R. M. (1998a). Electron scattering loss in Earth’s inner magnetosphere-1: Dominant physical processes. J. Geophys. Res., 103(A2), 2385–2396. https://doi.org/10.1029/97JA02919

Abel, B., and Thorne, R. M. (1998b). Electron scattering loss in Earth’s inner magnetosphere-2: Sensitivity to model parameters. J. Geophys. Res., 103(A2), 2397–2407. https://doi.org/10.1029/97JA02920

Berthelier, J. J., Godefroy, M., Leblanc, F., Malingre, M., Menvielle, M., Lagoutte, D., Brochot, J. Y., Colin, F., Elie, F., … Pfaff, R. (2006). ICE, The electric field experiment on DEMETER. Planet. Space Sci., 54(5), 456–471. https://doi.org/10.1016/j.pss.2005.10.016

Chang H. C., and Inan, U. S. (1983). Quasi-relativistic electron precipitation due to interactions with coherent VLF waves in the magnetosphere. J. Geophys. Res., 88(A1), 318–328. https://doi.org/10.1029/JA088iA01p00318

Datlowe, D. (2006). Differences between transmitter precipitation peaks and storm injection peaks in low-altitude energetic electron spectra. J. Geophys. Res., 111(A12), A12202. https://doi.org/10.1029/2006JA011957

Gamble, R. J., Rodger, C. J., Clilverd, M. A., Sauvaud, J. A., Thomson, N. R., Stewart, S. L., McCormick, R. J., Parrot, M., and Berthelier, J. J. (2008). Radiation belt electron precipitation by man-made VLF transmissions. J. Geophys. Res., 113(10), A10211. https://doi.org/10.1029/2008JA013369

Graf, K. L., Inan, U. S., Piddyachiy, D., Kulkarni, P., Parrot, M., and Sauvaud, J. A. (2009). DEMETER observations of transmitter-induced precipitation of inner radiation belt electrons. J. Geophys. Res., 114(A7), A07205. https://doi.org/10.1029/2008JA013949

Huang, J. P., Liu, J., Ouyang, X. Y., and Li, W. J. (2010). Analysis to the energetic particles around the M8.8 Chili earthquake. Seismol. Geol., 32(3), 417–423. https://doi.org/10.3969/j.issn.0253-4967.2010.03.008

Imhof, W. L., Anderson, R. R., Reagan, J. B., and Gaines, E. E. (1981). The significance of VLF transmitters in the precipitation of inner belt electrons. J. Geophys. Res., 86(A13), 11225–11234. https://doi.org/10.1029/JA086iA13p11225

Imhof, W. L., Reagan, J. B., Voss, H. D., Gaines, E. E., Datlowe, D. W., Mobilia, J., Helliwell, R. A., Inan, U. S., Katsufrakis, J., and Joiner, R. G. (1983a). The modulated precipitation of radiation belt electrons by controlled signals from VLF transmitters. Geophys. Res. Lett., 10(8), 615–618. https://doi.org/10.1029/GL010i008p00615

Inan, U. S., Bell, T. F., and Helliwell, R. A. (1978). Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere. J. Geophys. Res., 83(B7), 3235–3253. https://doi.org/10.1029/JA083iA07p03235

Inan, U. S., Chang, H. C., and Helliwell, R. A. (1984). Electron precipitation zones around major ground-based VLF signal sources. J. Geophys. Res., 89(A5), 2891–2906. https://doi.org/10.1029/JA089iA05p02891

Inan, U. S., Bell, T. F., Bortnik, J., and Albert, J. M. (2003). Controlled precipitation of radiation belt electrons. J. Geophys. Res., 108(A5), 1186. https://doi.org/10.1079/2002JA009580

Kimura, I., Matsumoto, H., Mukai, T., Hashimoto, K., Bell, T. F., Inan, U. S., Helliwell, R. A., and Katsufrakis, J. P. (1983). EXOS-B/Siple Station VLF wave-particle interaction experiments: 1. General description and wave-particle correlations. J. Geophys. Res., 88(A1), 282–294. https://doi.org/10.1029/JA088iA01p00282

Koons H. C., Edgar, B. C., and Vampola, A. L. (1981). Precipitation of inner zone electrons by Whistler mode waves from the VLF transmitters UMS and NWC. J. Geophys. Res., 86(A2), 640–648. https://doi.org/10.1029/JA086iA02p00640

Li, X. Q., Ma, Y. Q., Wang, H. Y., Lu, H., Zhang, X. M., Wang, P., Shi, F., Xu, Y. B., Huang, J. P., … Zhao, X. Y. (2010). Observation of particle on space electro-magnetic satellite during Wenchuan earthquake. Chinese J. Geophys.(in Chinese) , 53(10), 2337–2344. https://doi.org/10.3969/j.issn.0001-5733.2010.10.007

Li, X. Q., Ma, Y. Q., Wang, P., Wang, H. Y., Lu, H., Wang, X. M., Huang, J. P., Shi, F., Yu, X.X., … Parrot, M. (2012). Study of the North West Cape electron belts observed by DEMETER satellite. J. Geophys. Res., 117(A4), A04201. https://doi.org/10.1029/2011JA017121

Parrot, M., Sauvaud, J. A., Berthelier, J. J., and Lebreton, J. P. (2007). First in-situ observations of strong ionospheric perturbations generated by a powerful VLF ground-based transmitter. Geophys. Res. Lett., 34(11), L11111. https://doi.org/10.1029/2007GL029368

Sauvaud, J. A., Maggiolo, R., Jacquey, C., Parrot, M., Berthelier, J. J., Gamble, R. J., and Rodger, C. J. (2008). Radiation belt electron precipitation due to VLF transmitters: Satellite observations. Geophys. Res. Lett., 35(9), L09101. https://doi.org/10.1029/2008GL033194

Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J. P., Zhu, X. H., Piergiorgio, P., and Dai, J. P. (2018). The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci., 61(5), 634–642. https://doi.org/10.1007/s11431-018-9242-0

Sidiropoulos, N. F., Anagnostopoulos, G., and Rigas, V. (2011). Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes. Nat. Hazards Earth Syst. Sci., 11(7), 1901–1913. https://doi.org/10.5194/nhess-11-1901-2011

Wan, J. H., Wang, F. F., Shan, X. J., and Yan, X. X. (2012). Preliminary application of energetic particle on DEMETER Satellite in Wenchuan earthquake. Progress in Geophys., 27(6), 2279–2288. https://doi.org/10.6038/j.issn.1004-2903.2012.06.002

Wang, L. W., Shen, X. H., Zhang, Y., Zhang, X. G., Hu, Z., Yan, R., Yuan, S. G., and Zhu, X. H. (2016). Developing progress of China Seismo-Electromagnetic Satellite project. Acta Seismol. Sin., 38(3), 376–385. https://doi.org/10.11939/jass.2016.03.005

Zeng, Z. C., Zhang, B., Fang, G. Y., Wang, D. F., and Yin, H. J. (2009). The analysis of ionospheric variations before Wenchuan earthquake with DEMETER data. Chinese J. Geophys., 52(1), 11–19

Zhang, X. M., Liu, J., Shen, X. H., Parrot, M., Qian, J. D., Ouyang, X. Y., Zhao, S. F., and Huang, J. P. (2010a). Ionospheric perturbations associated with the M 8.6 Sumatra earthquake on 28 March 2005. Chinese J. Geophys.(in Chinese) , 53(3), 567–575. https://doi.org/10.3969/j.issn.0001-5733.2010.03.010

Zhang, X., Zeren, Z., Parrot, M., Battiston, R., Qian, J. and Shen, X. (2011). ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Adv. Space Res., 47(6), 991–1000. https://doi.org/10.1016/j.asr.2010.11.001

Zhang, X., Shen, X., Parrot, M., Zeren, Z., Ouyang, X., Liu, J., Qian, J., Zhao, S., and Miao, Y. (2012). Phenomena of electrostatic perturbations before strong earthquakes (2005-2010) observed on DEMETER. Nat. Hazards Earth Syst. Sci., 12(1), 75–83. https://doi.org/10.5194/nhess-12-75-2012

Zhang, X. M., Shen, X. H., Liu, J., Ouyang, X. Y., Qian, J. D., and Zhao, S. F. (2010b). Ionospheric perturbations of electron density before the Wenchuan Earthquake. Int. J. Remote Sens., 31(13), 3559–3569. https://doi.org/10.1080/01431161003727762

Zhang, Z. X., Li, X. Q., Wu, S. G., Ma, Y. Q., Shen, X. H., Chen, H. R., Wang, P., You, X. Z., and Yuan, Y. H. (2012). DEMETER satellite observations of energetic particle prior to Chile earthquake. Chinese J. Geophys.(in Chinese) , 55(5), 1581–1590. https://doi.org/10.6038/j.issn.0001-5733.2012.05.016

Zhu, T., and Wang, L. W. (2011). LF electric field anomalies related to Wenchuan earthquake observed by DEMETER satellite. Chinese J. Geophys.(in Chinese) , 54(3), 717–727. https://doi.org/10.3969/j.issn.0001-5733.2011.03.011

[1]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[2]

XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 1-8. doi: 10.26464/epp2018051

[3]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 1-7. doi: 10.26464/epp2018044

[4]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[5]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe Onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 1-10. doi: 10.26464/epp2018046

[6]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[7]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[8]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[9]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[10]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A study on the energetic electron precipitation observed by CSES

YaLu Wang, XueMin Zhang, XuHui Shen