Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

2019, 3(1): 17-25. doi: 10.26464/epp2019003


Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection


Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China


Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China


National Supercomputer Center in Guangzhou, Sun Yat-sen University, Guangzhou 510006, China


Department of Earth Science and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis 55455, USA


Applied Physics and Applied Mathematics Department, Columbia University, New York 10027, USA


Key Laboratory of Computing Geodynamics, Chinese Academy of Sciences, Beijing 100049, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: BoJing Zhu,

Received Date: 2018-06-12
Web Publishing Date: 2019-01-01

A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale (LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 1010–1011; the ratio of observed evolution time to electron gyroperiod is on the order of 107–109). The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes. In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model. We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands (kinetic scale), to the stage of coalescence and growth into larger islands (dynamic scale), to the stages of constant and quasi-constant (contracting-expanding) islands (hydro scale). As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands’ interactions in solar atmosphere LTSTMR activities (pico-, 10–2–105 m; nano-, 105–106 m; micro-, 106–107 m; macro-, 107–108 m; large-, 108–109 m).

Key words: hybrid particle acceleration mechanism, large temporal-spatial turbulent magnetic reconnection, Hydro-Dynamic-Kinetic model

Ambrosiano, J., Matthaeus, W. H., Goldstein, M. L., Plante, D. (1988). Test particle acceleration in turbulent reconnecting magnetic fields. J. Geophys. Res., 93(A12), 14383–14400.

Bian, N. H., Kontar, E. P. (2013). Stochastic acceleration by multi-island contraction during turbulent magnetic reconnection. Phys. Rev. Lett., 110(15), 151101.

Biskamp, D., Welter, H. (1980). Coalescence of Magnetic Islands. Phys. Rev. Lett., 44(16), 1069–1072.

Biskamp, D. (2000). Magnetic Reconnection in Plasmas. New York: Cambridge University Press.222

Brizard, A. J., Chan, A. A. (1999). Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations. Phys. Plasmas, 6(12), 4548–4558.

Cassak, P. A., Drake, J. F. (2013). On phase diagrams of magnetic reconnection. Phys. Plasmas, 20(6), 061207.

Chen, Y., Du, G. H., Zhao, D., Wu, Z., Liu, W., Wang, B., Ruan, G. P., Feng, S. W., Song, H. Q. (2016). Imaging a magnetic-breakout solar eruption. APJL, 820(2), L30.

Comisso, L., Soroni, L. (2018). Particle acceleration in relativistic plasma turbulence. Phys.Rev. Lett, 121, 255101.

Drake, J. F., Swisdak, M., Che, H., Shay, M. A. (2006). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443(7111), 553–556.

Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., André, M., Gao, J. B., Olshevsky, V., Eastwood, J. P., Retinò, A. (2017). Intermittent energy dissipation by turbulent reconnection. Geophys. Res. Lett., 44(1), 37–43.

Gan, W. Q., Wang, D. Y. (2016). Solar High-Energy Physics. The Science Publishing Company, 317.222

Gou, T. Y., Liu, R., Wang, Y. M., Liu, K., Zhuang, B., Chen, J., Zhang, Q. H., Liu, J. J. (2016). Stereoscopic observation of slipping reconnection in a double candle-flame-shaped solar flare. APJL, 821(2), L28.

Haines, M. G. (1986). Magnetic-field generation in laser fusion and hot-electron transport. Can. J. Phys., 64(8), 912–919.

Hoshino, M. (2012). Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys. Rev. Lett., 108(13), 135003.

Ji, H. T., Daughton, W. (2011). Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas, 18(11), 111207.

Lazarian, A., Opher, M. (2009). A model of acceleration of anomalous cosmic rays by reconnection in the Heliosheath. Astrophys. J., 703(1), 8–21.

Lin, J., Murphy, N. A., Shen, C. C., Raymond, J. C., Reeves, K. K., Zhong, J. Y., Wu, N., Li, Y. (2015). Review on current sheets in CME development: theories and observations. Space Sci. Rev., 194(1-4), 237–302.

Liu, Y. H., Hesse, M., Guo, F., Daughton, W., Li, H., Cassak, P. A., Shay, M. A. (2017). Why does steady-state magnetic reconnection have a maximum local rate of order 0. 1?. Phys. Rev. Lett., 118(8), 085101.

Mendoza, M., Boghosian, B. M., Herrmann, H. J., Succi, S. (2010). Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett., 105(1), 014502.

Li, Y., Lin, J. (2012). Acceleration of electrons and protons in reconnecting current sheets including single or multiple x-points. Sol. Phys., 279(1), 91–113.

Oka, M., Phan, T. D., Krucker, S., Fujimoto, M., Shinohara, I. (2010). Electron acceleration by multi-island coalescence. Astrophys. J., 714(1), 915–926.

Raymond, J.C., Krucker, S., Lin, R.P., Petrosian, V. (2012). Observational Aspects of Particle Acceleration in Large Solar Flares. Space Sci.Rev., 173(1-4), 197–221.

Petrosian, V. (2012). Stochastic acceleration by turbulence. Space Sci. Rev., 173(1-4), 535–556.

Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang, H., … Lucek, E. (2013). Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nat. Commun., 4, 1466.

Song, H. Q., Chen, Y., Li, G., Kong, X. L., Feng, S. W. (2012). Coalescence of macroscopic magnetic islands and electron acceleration from STEREO observation. Phys. Rev. X, 2(2), 021015.

Walker, D. N., Bowles, J. H., Amatucci, W. E., Holland, D. L., Chen J. (2004). The Harris magnetic field: A laboratory realization of the topology based on energy resonance. J. Geophys. Res., 109(A6), A06205

Wang, H. Y., Lu, Q. M., Hang, C., Wang, S. (2016). The mechanisms of electron acceleration during multiple X line magnetic reconnection with a guide field. Astrophys. J., 821(2), 84.

Wang, H. Y., Lu, Q. M., Huang, C., Wang, S. (2017). Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field. Phys. Plasmas, 24(5), 052113.

Wang, R. S., Lu, Q. M., Nakamura, R., Huang, C., Du, A. M., Guo, F., Teh, W., Wu, M. Y., Lu, S., Wang, S. (2016). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys., 12(3), 263–267.

Wang, R. S., Nakamura, R., Lu, Q, M., Baumjohann, W., Ergun, R. E., Burch, J. L., Volwerk, M., Varsani, A., Nakamura, T., … Wang, S. (2017). Electron-scale quadrants of the hall magnetic field observed by the magnetospheric multiscale spacecraft during asymmetric reconnection. Phys. Rev. Lett., 118(17), 175101.

Yi, S. M., Jhang, H., Kwon, J. M. (2016). Gyrokinetic simulations of an electron temperature gradient turbulence driven current in tokamak plasmas. Phys. Plasmas, 23(10), 102514.

Zhong, J. Y., Lin, J., Li, Y. T., Wang, X., Li, Y., Zhang, K., Yuan, D. W., Ping, Y. L., Wei, H. G., … Zhang, J. (2016). Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare. Astrophys. J. Suppl. Ser., 225(2), 30.

Zong, Q. G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H., Liu, A. T., Vogiatzis, I., Glassmeier, K. H., … Reme, H. (2004). Cluster observations of earthward flowing plasmoid in the tail. Geophys. Res. Lett., 31(18), L18803.


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022


YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038


Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004


Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026


LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043


Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi