Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics. doi: 10.26464/epp2019005

doi: 10.26464/epp2019005


Crustal strain rates of southeastern Tibetan plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane

State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China

Corresponding author: KeLiang Zhang,

Received Date: 2018-10-12
Web Publishing Date: 2019-01-01

The link between the crustal deformation and mantle kinematics in the Tibetan plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle. However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane (also known as the Shan-Thai block) remains unclear. In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle. The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region. The most prominent shear zone, whose shear strain rates are larger than 100×10–9 a–1, is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10–9 a–1. A secondary shear zone along the Anninghe-Xiaojiang fault in the east shows segmented shear zones near several conjunctions. While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively. Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8% (100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates. Moreover, we find that the Fast Velocity Direction (FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane. Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle.

Key words: strain rate tensor, GPS measurement, lithospheric deformation, southeastern Tibetan plateau, Shan-Thai terrane

Bai, D. H., Unsworth, M. J., Meju, M. A., Ma, X. B., Teng, J. W., Kong, X. R., Sun, Y., Sun, J., Wang, L. F., … Liu, M. (2010). Crustal deformation of the eastern Tibetan Plateau revealed by Magnetotelluric imaging. Nat. Geosci., 3(5), 358–362.

Bai, L., Tian, X. B., and Ritsema, J. (2010). Crustal structure beneath the Indochina peninsula from teleseismic receiver functions. Geophys. Res. Lett., 37(24), L24308.

Bendick, R., and Flesch, L. (2007). Reconciling lithospheric deformation and lower crustal flow beneath central Tibet. Geology, 35(10), 895–898.

Chang, L. J., Flesch, L. M., Wang, C. Y., and Ding, Z. F. (2015). Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data. Geophys. Res. Lett., 42(14), 5813–5819.

Chen, Y., Zhang, Z. J., Sun, C. Q., Badal, J. (2013). Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Research, 24(3–4), 946–957.

Copley, A. (2008). Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophys. J. Int., 174(3), 1081–1100.

Duong, N. A., Sagiya, T., Kimata, F., To, T. D., Hai, V. Q., Cong, D. C., Binh, N. X., and Xuyen, N. D. (2013). Contemporary horizontal crustal movement estimation for northwestern Vietnam inferred from repeated GPS measurements. Earth Planets Space, 65(12), 1399–1410.

Gan, W. J., Zhang, P. Z., Shen, Z. K., Niu, Z. J., Wang, M., Wan, Y. G., Zhou, D. M., and Cheng, J. (2007). Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 112(B8), B08416.

Gupta, T. D., Riguzzi, F., Dasgupta, S., Mukhopadhyay, B., Roy, S., and Sharma, S. (2015). Kinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in Northeast India. Tectonophysics, 655, 15–26.

Holt, W. E., Chamot-Rooke, N., Le Pichon, X., Hanies, A. J., Shen-Tu, B., and Ren, J. (2000). Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J. Geophys. Res., 105(B8), 19185–19209.

Huchon, P., Le Pichon X., Rangin, C. (1994). Indochina peninsula and the collision of India and Eurasia. Geology, 22, 27–30.<0027:IPATCO>2.3.CO;2

Huang, Z. C., Wang, L. S., Zhao, D. P., Mi, N., and Xu, M. J. (2011). Seismic anisotropy and mantle dynamics beneath China. Earth Planet. Sci. Lett., 306(1–2), 105–117.

Lei, J. S., Zhao, D. P., and Su, Y. J. (2009). Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res., 114(B5), B05302.

Leloup, P. H., Lacassin, R., Tapponnier, P., Schärer U, Zhong, D. L., Zhang, L. S., Ji, S. C., and Trinh, P. T. (1995). The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1–4), 3–84.

Li, C., Van der Hilst, R. D., Meltzer, A. S., and Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett., 274(1–2), 157–168.

Li, S. H., Advokaat, E. L., van Hinsbergen, D. J. J., Koymans, M., Deng, C. L., and Zhu, R. X. (2017). Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: Review and updated kinematic reconstruction. Earth-Sci. Rev., 171, 58–77.

Liang, S. M., Gan, W. J., Sheng, C. Z., Xiao, G. R., Liu, J., Chen, W. T., Ding, X. G., and Zhou, D. M. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophy. Res., 118(10), 5722–5732.

Lev, E., Long, M., and van der Hilst R. (2006). Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet. Sci. Lett., 251, 293–304.

Rangin, C., Maurin, T., and Masson, F. (2013). Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma. J. Asian Earth Sci., 76, 185–194.

Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z. L., Shen, F., and Liu,Y. P. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276, 788–790.

Royden, L. H., Burchfiel, B. C., and van der Hilst R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058.

Savage, J. C., and Burford, R. O. (1973). Geodetic determination of relative plate motion in Central California. J. Geophys. Res., 78(5), 832–845.

Shen, Z. K., Lü, J. N., Wang, M., and Bürgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res., 110(B11), B11409.

Shi, X. H., Wang, Y., Sieh, K., Weldon, R., Feng, L. J., Chan, C. H., and Liu-Zeng, J. (2018). Fault slip and GPS velocities across the Shan Plateau define a curved southwestward crustal motion around the Eastern Himalayan Syntaxis. J. Geophys. Res., 123(3), 2502–2518.

Shi, Y. T., Gao, Y., Su, Y. J., and Wang, Q. (2012). Shear-wave splitting beneath Yunnan area of southwest China. Earthq. Sci., 25(1), 25–34.

Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Abu, S. H., Promthong, C., Subarya, C., Sarsito, D. A., Matheussen, S., Morgan, P., and Spakman, W. (2007). A decade of GPS in southeast Asia: resolving Sundaland motion and boundaries. J. Gephys. Res., 112(B6), B06420.

Sol, S., Meltzer, A., Bürgmann, R., van der Hilst, R. D., King, R., Chen, Z., Koons, P. O., Lev, E., Liu, Y. P., … Zurek, B. (2007). Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566.

Sternai, P., Avouac, J. P., Jolivet, L., Faccenna, C., Gerya, T., Wolfgang Becker, T., and Menant, A. (2016). On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones: Comparison with the eastern Tibetan margin. J. Geodyn., 100, 184–197.

Tanaka, K., Mu, C. L., Sato, K., Takemoto, K., Miura, D., Liu, Y. Y., Zaman, H., Yang, Z. Y., Yokoyama, M., … Otofuji, Y. (2008). Tectonic deformation around the eastern Himalayan syntaxis: Constraints from the Cretaceous palaeomagnetic data of the Shan-Thai Block. Geophy. J. Inter., 175(2), 713–728.

Tape, C., Musé, P., Simons, M., Dong, D., and Webb, F. (2009). Multiscale estimation of GPS velocity fields. Geophys. J. Int., 179(2), 945–971.

Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., and Cobbold, P. (1982). Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10(12), 611–616.<611:PETIAN>2.0.CO;2

Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger G, and Yang, J. S. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671–1677.

Trần, Đ. T., Nguyễn, T. Y., Dương, C. C., Vy, Q. H., Witold, Z., Nguyễn, Q. C., and Nguyễn, V. N. (2013). Recent crustal movements of northern Vietnam from GPS data. J. Geodyn., 69, 5–10.

Vigny, C., Socquet, A., Rangin, C., Chamot-Rook, N., Pubellier, M., Bouin, M.-N., Bertrand, G., Becker, M. (2003). Present-day crustal deformation around Sagaing fault, Myanmar. J. Geophys. Res., 108, B11, 2533.

Wang, C. Y., Flesch, L. M., Silver, P. G., Chang, L. J., and Chan, W. W. (2008). Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5), 363–366.

Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X. A., You, X. Z., Niu, Z. J., Wu, J. C., … Chen, Q. Z. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542), 574–577.

Wang, W., Qiao, X. J., Yang, S. M., and Wang, D. J. (2017). Present-day velocity field and block kinematics of Tibetan plateau from GPS measurements. Geophys. J. Int., 208(2), 1088–1102.

Wei, W., Xu, J. D., Zhao, D. P., and Shi, Y. L. (2012). East Asia mantle tomography: new insight into plate subduction and intraplate volcanism. J. Asian Earth Sci., 60, 88–103.

Wei, W., Zhao, D. P., Xu, J. D., Zhou, B. G., and Shi, Y. L. (2016). Depth variations of P-wave azimuthal anisotropy beneath Mainland China. Sci. Rep., 6, 29614.

Wessel, P., and Smith, W. H. F. (1998). New, improved version of Generic Mapping Tools released. Eos, 79(47), 579.

Wessel, P., and Becker, J. M. (2008). Interpolation using a generalized Green's function for a spherical surface spline in tension. Geophys. J. Int., 174(1), 21–28.

Yin, A., and Harrison, T. M. (2000). Geologic evolution of the Himalayan–Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28, 211–280.

Zhang, P. Z., Deng, Q. D., Zhang, G. M., Ma, J., Gan, W. J., Min, W., Mao, F. Y., and Wang, Q. (2003). Active tectonic blocks and strong earthquakes in the continent of China. Sci. China,Ser. D Earth Sci., 46(S2), 13–24.

Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Burgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z., You, X. Z. (2004). Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9), 809–812.


YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038


JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics. doi: 10.26464/epp2019017


Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics. doi: 10.26464/epp2019006


XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Crustal strain rates of southeastern Tibetan plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane

KeLiang Zhang, ShiMing Liang, WeiJun Gan