Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics. doi: 10.26464/epp2019012

doi: 10.26464/epp2019012

ATMOSPHERIC PHYSICS

Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses

1. 

Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China

2. 

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

3. 

Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel

Corresponding author: Jian Rao, raojian@nuist.edu.cn

Received Date: 2018-11-04
Web Publishing Date: 2019-04-01

This study compares the climatology and long-term trend of northern winter stratospheric residual mean meridional circulation (RMMC), as well as its responses to El Niño-Southern Oscillation (ENSO), stratospheric Quasi Biennial Oscillation (QBO), and solar cycle in ten reanalyses and a stratosphere-resolving model, CESM1-WACCM. The RMMC is a large-scale meridional circulation cell in the stratosphere, usually referred to as the estimate of the Brewer Dobson circulation (BDC). The distribution of the BDC is generally consistent among multiple reanalyses except that the NOAA twentieth century reanalysis (20RC) largely underestimates it. Most reanalyses (except ERA40 and ERA-Interim) show a strengthening trend for the BDC during 1979–2010. All reanalyses and CESM1-WACCM consistently reveal that the deep branch of the BDC is significantly enhanced in El Niño winters as more waves from the troposphere dissipate in the stratospheric polar vortex region. A secondary circulation cell is coupled to the temperature anomalies below the QBO easterly center at 50 hPa with tropical upwelling/cooling and midlatitude downwelling/warming, and similar secondary circulation cells also appear between 50–10 hPa and above 10 hPa to balance the temperature anomalies. The direct BDC response to QBO in the upper stratosphere creates a barrier near 30°N to prevent waves from propagating to midlatitudes, contributing to the weakening of the polar vortex. The shallow branch of the BDC in the lower stratosphere is intensified during solar minima, and the downwelling warms the Arctic lower stratosphere. The stratospheric responses to QBO and solar cycle in most reanalyses are generally consistent except in the two 20CRs.

Key words: residual mean meridional stream function (RMMSF), Brewer-Dobson circulation (BDC), El Niño-Southern Oscillation (ENSO); Quasi-Biennial Oscillation (QBO)

Abalos, M., Legras, B., Ploeger, F., and Randel, W. J. (2015). Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. Atmos., 120(15), 7534–7554. https://doi.org/10.1002/2015JD023182

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 489). San Diego: Academic Press.222

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., … Takahashi, M. (2001). The Quasi-Biennial oscillation. Rev. Geophys., 39(2), 179–229. https://doi.org/10.1029/1999RG000073

Baldwin, M. P., Thompson, D. W. J., Shuckburgh, E. F., Norton, W. A., and Gillett, N. P. (2003). Weather from the stratosphere?. Science, 301(5631), 317–319. https://doi.org/10.1126/science.1085688

Birner, T., and Bönisch, H. (2011). Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11(2), 817–827. https://doi.org/10.5194/acp-11-817-2011

Brewer, A. W. (1949). Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75(326), 351–363. https://doi.org/10.1002/qj.49707532603

Butchart, N., Scaife, A. A., Bourqui, M., de Grandpré, J., Hare, S. H. E., Kettleborough, J., Langematz, U., Manzini, E., Sassi, F., … Sigmond, M. (2006). Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dyn., 27(7–8), 727–741. https://doi.org/10.1007/s00382-006-0162-4

Butchart, N., Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W., Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M. P., … Tian, W. (2010). Chemistry-Climate Model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23(20), 5349–5374. https://doi.org/10.1175/2010JCLI3404.1

Butchart, N. (2014). The Brewer-Dobson circulation. Rev. Geophys., 52(2), 157–184. https://doi.org/10.1002/2013RG000448

Calvo, N., Garcia, R. R., Randel, W. J., and Marsh, D. R. (2010). Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67(7), 2331–2340. https://doi.org/10.1175/2010JAS3433.1

Camp, C. D., and Tung, K. K. (2007). The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex. J. Atmos. Sci., 64(4), 1267–1283. https://doi.org/10.1175/Jas3883.1

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleasonm, B. E., Vose, R. S., Rutledge, G., … Worley, S. J. (2011). The Twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137(654), 1–28. https://doi.org/10.1002/qj.776

de la Cámara, A., Abalos, M., Hitchcock, P., Calvo, N., and Garcia, R. R. (2018). Response of Arctic ozone to sudden stratospheric warmings. Atmos. Chem. Phys., 18(22), 16499–16513. https://doi.org/10.5194/acp-18-16499-2018

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., … Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597. https://doi.org/10.1002/qj.828

Dobson, G. M. B., and Massey, H. S. W. (1956). Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. London A Math. Phys. Sci., 236(1205), 187–193. https://doi.org/10.1098/rspa.1956.0127

Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R., Onogi, K., Harada, Y., Yasui, S., Miyaoka, K., … Ishimizu, T. (2011). The Japanese 55-year Reanalysis " JRA-55”: An Interim Report. SOLA, 7, 149–152. https://doi.org/10.2151/sola.2011-038

Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., … Boering, K. (2008). Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 28–31. https://doi.org/10.1038/ngeo388

Forster, P. M. D. F., and Shine, K. P. (1999). Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26(21), 3309–3312. https://doi.org/10.1029/1999gl010487

Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., … Wargan, K. (2017). Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17(2), 1417–1452. https://doi.org/10.5194/acp-17-1417-2017

Garcia, R. R., and Randel, W. J. (2008). Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65(8), 2731–2739. https://doi.org/10.1175/2008jas2712.1

Garfinkel, C. I., and Hartmann, D. L. (2008). Different ENSO teleconnections and their effects on the stratospheric polar vortex?. J. Geophys. Res., 113(D18), D18114. https://doi.org/10.1029/2008jd009920

Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W. (2012). Does the Holton-Tan mechanism explain how the Quasi-Biennial Oscillation modulates the Arctic Polar vortex. J. Atmos. Sci., 69(5), 1713–1733. https://doi.org/10.1175/JAS-D-11-0209.1

Gray, L. J., Crooks, S., Pascoe, C., Sparrow, S., and Palmer, M. (2004). Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61(23), 2777–2796. https://doi.org/10.1175/JAS-3297.1

Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine, K. P. (1991). On the " downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48(4), 651–678. https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2

Hersbach, H., Peubey, C., Simmons, A., Berrisford, P., Poli, P., and Dee, D. (2015). ERA-20CM: a twentieth-century atmospheric model ensemble. Quart. J. Meteor. Roy. Soc., 141(691), 2350–2375. https://doi.org/10.1002/qj.2528

Holton, J. R., and Tan, H. C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37(10), 2200–2208. https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2

Holton, J. R. (1990). On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci., 47(3), 392–395. https://doi.org/10.1175/1520-0469(1990)047<0392:OTGEOM>2.0.CO;2

Hu, J. G., Li, T., Xu, H. M., and Yang, S. Y. (2017). Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Climate Dyn., 49(1–2), 263–278. https://doi.org/10.1007/s00382-016-3340-z

Hu, Y. Y., and Tung, K. K. (2002). Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere Annular mode. J. Climate, 15(13), 1659–1673. https://doi.org/10.1175/1520-0442(2002)015<1659:IADVOP>2.0.CO;2

Iwasaki, T., Hamada, H., and Miyazaki, K. (2009). Comparisons of Brewer-Dobson circulations diagnosed from reanalyses. J. Meteor. Soc. Japan, 87(6), 997–1006. https://doi.org/10.2151/jmsj.87.997

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., … Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., and Potter, G. L. (2002). NCEP-DOE AMIP-Ⅱ Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11), 1631–1643. https://doi.org/10.1175/bams-83-11-1631

Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A. (2016). Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses. Atmos. Chem. Phys., 16(11), 6681–6699. https://doi.org/10.5194/acp-16-6681-2016

Kim, Y. H., and Chun, H. Y. (2015). Momentum forcing of the Quasi-Biennial Oscillation by equatorial waves in recent reanalyses. Atmos. Chem. Phys., 15(12), 6577–6587. https://doi.org/10.5194/acp-15-6577-2015

Kodera, K., and Kuroda, Y. (2002). Dynamical response to the solar cycle. J. Geophys. Res., 107(D24), ACL 5-1–ACL 5-12. https://doi.org/10.1029/2002JD002224

Lossow, S., McLandress, C., Jonsson, A. I., and Shepherd, T. G. (2012). Influence of the Antarctic ozone hole on the polar mesopause region as simulated by the Canadian Middle Atmosphere Model. J. Atmos. Sol. Terr. Phys., 74, 111–123. https://doi.org/10.1016/j.jastp.2011.10.010

Lubis, S. W., Omrani, N. E., Matthes, K., and Wahl, S. (2016). Impact of the Antarctic ozone hole on the vertical coupling of the stratosphere–mesosphere–lower thermosphere system. J. Atmos. Sci., 73(6), 2509–2528. https://doi.org/10.1175/JAS-D-15-0189.1

Lubis, S. W., Silverman, V., Matthes, K., Harnik, N., Omrani, N. E., and Wahl, S. (2017). How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?. Atmos. Chem. Phys., 17(3), 2437–2458. https://doi.org/10.5194/acp-17-2437-2017

Lubis, S. W., Matthes, K., Harnik, N., Omrani, N. E., and Wahl, S. (2018a). Downward wave coupling between the stratosphere and troposphere under future anthropogenic climate change. J. Climate, 31(10), 4135–4155. https://doi.org/10.1175/JCLI-D-17-0382.1

Lubis, S. W., Huang, C. S. Y., and Nakamura, N. (2018b). Role of finite-amplitude eddies and mixing in the life cycle of stratospheric sudden warmings. J. Atmos. Sci., 75(11), 3987–4003. https://doi.org/10.1175/JAS-D-18-0138.1

Lubis, S. W., Huang, C. S. Y., Nakamura, N., Omrani, N. E., and Jucker, M. (2018c). Role of finite-amplitude Rossby waves and nonconservative processes in downward migration of extratropical flow anomalies. J. Atmos. Sci., 75(5), 1385–1401. https://doi.org/10.1175/JAS-D-17-0376.1

Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Climate, 26(19), 7372–7391. https://doi.org/10.1175/JCLI-D-12-00558.1

Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U. (2006). Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res., 111(D6), D06108. https://doi.org/10.1029/2005jd006283

McLandress, C., and Shepherd, T. G. (2009). Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22(6), 1516–1540. https://doi.org/10.1175/2008jcli2679.1

Miyazaki, K., Iwasaki, T., Kawatani, Y., Kobayashi, C., Sugawara, S., and Hegglin, M. I. (2016). Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis data sets. Atmos. Chem. Phys., 16(10), 6131–6152. https://doi.org/10.5194/acp-16-6131-2016

Oberländer-Hayn, S., Gerber, E. P., Abalichin, J., Akiyoshi, H., Kerschbaumer, A., Kubin, A., Kunze, M., Langematz, U., Meul, S., … Oman, L. D. (2016). Is the Brewer-Dobson circulation increasing or moving upward?. Geophys. Res. Lett., 43(4), 1772–1779. https://doi.org/10.1002/2015GL067545

Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., … Taira, R. (2007). The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85(3), 369–432. https://doi.org/10.2151/jmsj.85.369

Orsolini, Y. J., Nishii, K., and Nakamura, H. (2018). Duration and decay of Arctic stratospheric vortex events in the ECMWF seasonal forecast model. Quart. J. Roy. Meteor. Soc., 144(717), 2876–2888. https://doi.org/10.1002/qj.3417

Plumb, R. A. (2002). Stratospheric transport. J. Meteor. Soc. Japan, 80(4B), 793–809. https://doi.org/10.2151/jmsj.80.793

Polvani, L. M., and Kushner, P. J. (2002). Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29(7), 18-1–18-4. https://doi.org/10.1029/2001gl014284

Polvani, L. M., Abalos, M., Garcia, R., Kinnison, D., and Randel, W. J. (2018). Significant weakening of Brewer-Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol. Geophys. Res. Lett., 45(1), 401–409. https://doi.org/10.1002/2017GL075345

Randel, W. J., Garcia, R. R., Calvo, N., and Marsh, D. (2009). ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36(15), L15822. https://doi.org/10.1029/2009gl039343

Rao, J., Ren, R. C. and Yang, Y. (2015). Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv. Atmos. Sci., 32(7), 952–966. https://doi.org/10.1007/s00376-014-4192-2

Rao, J., and Ren, R. C. (2016a). A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Climate Dyn., 46(11–12), 3689–3707. https://doi.org/10.1007/s00382-015-2797-5

Rao, J., and Ren, R. C. (2016b). Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J. Geophys. Res. Atmos., 121(15), 9000–9016. https://doi.org/10.1002/2015jd024520

Rao, J., and Ren, R. C. (2016c). Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM. J. Geophys. Res. Atmos., 121(15), 9017–9032. https://doi.org/10.1002/2015jd024521

Rao, J., and Ren, R. C. (2017). Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Adv. Atmos. Sci., 34(9), 1121–1133. https://doi.org/10.1007/s00376-017-6260-x

Rao, J., and Ren, R. C. (2018). Varying stratospheric responses to tropical Atlantic SST forcing from early to late winter. Climate Dyn., 51(5–6), 2079–2096. https://doi.org/10.1007/s00382-017-3998-x

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108(D14), 4407. https://doi.org/10.1029/2002jd002670

Ren, R. C., Rao, J., Wu, G. X., and Cai, M. (2017). Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dyn., 48(9–10), 2859–2879. https://doi.org/10.1007/s00382-016-3238-9

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., … Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24(14), 3624–3648. https://doi.org/10.1175/jcli-d-11-00015.1

Rind, D., Suozzo, R., Balachandran, N. K., and Prather, M. J. (1990). Climate change and the middle atmosphere. Part Ⅰ: The doubled CO2 climate. J. Atmos. Sci., 47(4), 475–494. https://doi.org/10.1175/1520-0469(1990)047<0475:CCATMA>2.0.CO;2

Rind, D., Lean, J., Lerner, J., Lonergan, P., and Leboissitier, A. (2008). Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res. Atmos., 113(D24), D24103. https://doi.org/10.1029/2008jd010114

Roscoe, H. K. (2006). The Brewer–Dobson circulation in the stratosphere and mesosphere–Is there a trend?. Adv. Space Res., 38(11), 2446–2451. https://doi.org/10.1016/j.asr.2006.02.078

Rosenlof, K. H., and Holton, J. R. (1993). Estimates of the stratospheric residual circulation using the downward control principle. J. Geophys. Res. Atmos., 98(D6), 10465–10479. https://doi.org/10.1029/93JD00392

Rosenlof, K. H. (1995). Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res. Atmos., 100(D3), 5173–5191. https://doi.org/10.1029/94JD03122

Saha, S., Moorthi, S., Pan, H. L., Wu, X. R., Wang, J. D., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., … Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91(8), 1015–1058. https://doi.org/10.1175/2010bams3001.1

Seviour, W. J. M., Butchart, N., and Hardiman, S. C. (2012). The Brewer-Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc., 138(665), 878–888. https://doi.org/10.1002/qj.966

Shepherd, T. G. (2007). Transport in the middle atmosphere. J. Meteor. Soc. Japan, 85B, 165–191. https://doi.org/10.2151/jmsj.85b.165

Silverman, V., Harnik, N., Matthes, K., Lubis, S. W., and Wahl, S. (2018). Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO. Atmos. Chem. Phys., 18(9), 6637–6659. https://doi.org/10.5194/acp-18-6637-2018

Simpson, I. R., Shepherd, T. G., and Sigmond, M. (2011). Dynamics of the lower stratospheric circulation response to ENSO. J. Atmos. Sci., 68(11), 2537–2556. https://doi.org/10.1175/JAS-D-11-05.1

Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., … Woollen, J. (2005). The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131(612), 2961–3012. https://doi.org/10.1256/qj.04.176

Wang, W. G., Yang, F. Y., Zheng, J. M., Wang, H. Y., Fan, W. X., Yu, K., Chai, S. Y., and Hu, T. (2013). A study on the trend of the Brewer-Dobson circulation in light of the downward control principle. J. Yunnan Univ., 35(3), 328–337. https://doi.org/10.7540/j.ynu.20130099

Wang, W. G., Yang, F. Y., Wang, H. Y., Yang, T., Yu, K., Liang, S. K., and Fan, W. X. (2015). The distribution characters of the stratospheric Brewer-Dobson circulation inferred from ERA-Interim. Chinese J. Geophys., 58(1), 20–31. https://doi.org/10.1002/cjg2.20152

Wei, K., Chen, W., and Huang, R. H. (2007). Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34(16), L16814. https://doi.org/10.1029/2007gl030478

White, I. P., Lu, H., Mitchell, N. J., and Phillips, T. (2015). Dynamical response to the QBO in the northern winter stratosphere: signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci., 72(12), 4487–4507. https://doi.org/10.1175/JAS-D-14-0358.1

Xie, F., Li, J. P., Tian, W. S., Feng, J., and Huo, Y. (2012). Signals of El Nino Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12(11), 5259–5273. https://doi.org/10.5194/acp-12-5259-2012

[1]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics. doi: 10.26464/epp2019013

[2]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[3]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu