Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

2019, 3(2): 136-146. doi: 10.26464/epp2019013

ATMOSPHERIC PHYSICS

Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

3. 

Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

4. 

National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China

Corresponding author: XiangHui Xue, xuexh@ustc.edu.cn

Received Date: 2018-11-08
Web Publishing Date: 2019-03-01

Observations of a quasi-90-day oscillation in the mesosphere and lower thermosphere (MLT) region from April 2011 to December 2014 are presented in this study. There is clear evidence of a quasi-90-day oscillation in temperatures obtained from the Kunming meteor radar (25.6°N, 103.8°E) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), as well as in wind observed by the Kunming meteor radar. The quasi-90-day oscillation appears to be a prominent feature in the temperatures and meridional wind tides and presents quite regular cycles that occur approximately twice per year. The amplitudes and phases of the quasi-90-day oscillation in the SABER temperature show a feature similar to that of upward-propagated diurnal tides, which have a vertical wavelength of ~20 km above 70 km. In the lower atmosphere, a similar 90-day variability is presented in the surface latent heat flux and correlates with the temperature in the MLT region. Similar to the quasi-90-day oscillation in temperature, a 90-day variability of ozone (O3) is also present in the MLT region and is considered to be driven by a similar variability in the upwardly-propagated diurnal tides generated in the lower atmosphere. Moreover, the 90-day variability in the absorption of ultraviolet (UV) radiation by daytime O3 in the MLT region is an in situ source of the quasi-90-day oscillation in the MLT temperature.

Key words: quasi-90-day oscillation, meteor radar temperatures, SABER temperatures, tides, latent heat release, SABER ozone

Eckermann, S. D., and Vincent, R. A. (1994). First observations of intraseasonal oscillations in the equatorial mesosphere and lower thermosphere. Geophys. Res. Lett., 21(4), 265–268. https://doi.org/10.1029/93GL02835

Eckermann, S. D., Rajopadhyaya, D. K., and Vincent, R. A. (1997). Intraseasonal wind variability in the equatorial mesosphere and lower thermosphere: Long-term observations from the central pacific. J. Atmos. Sol. Terr. Phys., 59(6), 603–627. https://doi.org/10.1016/S1364-6826(96)00143-5

Gasperini, F., Hagan, M. E., and Zhao, Y. (2017). Evidence of tropospheric 90 day oscillations in the thermosphere. Geophys. Res. Lett., 44(20), 10125–10133. https://doi.org/10.1002/2017GL075445

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys., 11(5-6), 561–566. https://doi.org/10.5194/npg-11-561-2004

Guharay, A., Sekar, R., Venkat Ratnam, M., and Batista, P. P. (2012). Characteristics of the intraseasonal oscillations in the lower and middle atmosphere over Gadanki. J. Atmos. Sol. Terr. Phys., 77, 167–173. https://doi.org/10.1016/j.jastp.2011.12.016

Guharay, A., Batista, P. P., Clemesha, B. R., Sarkhel, S., and Buriti, R. A. (2014). Investigation of the intraseasonal oscillations over a Brazilian equatorial station: a case study. Earth Planets Space, 66, 145. https://doi.org/10.1186/s40623-014-0145-3

Gurubaran, S., and Rajaram, R. (1999). Long-term variability in the mesospheric tidal winds observed by MF radar over Tirunelveli (8.7°N, 77.8°E). Geophys. Res. Lett., 26(8), 1113–1116. https://doi.org/10.1029/1999GL900171

Hagan, M. E., Forbes, J. M., and Vial, F. (1995). On modeling migrating solar tides. Geophys. Res. Lett., 22(8), 893–896. https://doi.org/10.1029/95GL00783

Hagan, M. E. (1996). Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere. J. Geophys. Res., 101(D16), 21213–21222. https://doi.org/10.1029/96JD01374

Hagan, M. E., and Forbes, J. M. (2002). Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107(D24), ACL 6-1–ACL 6-15. https://doi.org/10.1029/2001JD001236

Hocking, W. K. (1999). Temperatures using radar-meteor decay times. Geophys. Res. Lett., 26(21), 3297–3300. https://doi.org/10.1029/1999GL003618

Hocking, W. K., Fuller, B., and Vandepeer, B. (2001). Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol. Terr. Phys., 63(2-3), 155–169. https://doi.org/10.1016/S1364-6826(00)00138-3

Holdsworth, D. A., Reid, I. M., and Cervera, M. A. (2004). Buckland Park all-sky interferometric meteor radar. Radio Science, 39, RS5009. https://doi.org/10.1029/2003RS003014

Holdsworth, D. A., Morris, R. J., Murphy, D. J., Reid, I. M., Burns, G. B., and French, W. J. R. (2006). Antarctic mesospheric temperature estimation using the Davis mesosphere-stratosphere-troposphere radar. J. Geophys. Res., 111(D5), D05108. https://doi.org/10.1029/2005JD006589

Huang, K. M., Liu, A. Z., Zhang, S. D., Yi, F., Huang, C. M., Gan, Q., Gong, Y., Zhang, Y. H., and Wang, R. (2015). Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20°N. Ann. Geophys., 33(10), 1321–1330. https://doi.org/10.5194/angeo-33-1321-2015

Isoda, F., Tsuda, T., Nakamura, T., Vincent, R. A., Reid, I. M., Achmad, E., Sadewo, A., and Nuryanto, A. (2004). Intraseasonal oscillations of the zonal wind near the mesopause observed with medium-frequency and meteor radars in the tropics. J. Geophys. Res., 109(D21), D21108. https://doi.org/10.1029/2003JD003378

Jiang, G. Y., Xu, J. Y., Shi, J. K., Yang, G. T., Wang, X., and Yan, C. X. (2010). The first observation of the atmospheric tides in the mesosphere and lower thermosphere over Hainan, China. Chin. Sci. Bull., 55(11), 1059–1066. https://doi.org/10.1007/s11434-010-0084-8

Kumar, K. K., Antonita, T. M., Ramkumar, G., Deepa, V., Gurubaran, S., and Rajaram, R. (2007). On the tropospheric origin of Mesosphere Lower Thermosphere region intraseasonal wind variability. J. Geophys. Res., 112(D7), D07109. https://doi.org/10.1029/2006JD007962

Li, N., Chen, J. S., Ding, Z. H., and Zhao, Z. W. (2015). Mean winds observed by the Kunming MF radar in 2008-2010. J. Atmos. Sol. -Terr. Phys., 122, 58–65. https://doi.org/10.1016/j.jastp.2014.10.011

Li, T., Liu, A. Z., Lu, X., Li, Z. H., Franke, S. J., Swenson, G. R., and Dou, X. K. (2012). Meteor-radar observed mesospheric semi-annual oscillation (SAO) and quasi-biennial oscillation (QBO) over Maui, Hawaii. J. Geophys. Res., 117(D5), D05130. https://doi.org/10.1029/2011JD016123

Lieberman, R. S. (1998). Intraseasonal variability of high-resolution Doppler imager winds in the equatorial mesosphere and lower thermosphere. J. Geophys. Res., 103(D10), 11221–11228. https://doi.org/10.1029/98JD00532

Lieberman, R. S., Ortland, D. A., and Yarosh, E. S. (2003). Climatology and interannual variability of diurnal water vapor heating. J. Geophys. Res., 108(D3), 4123. https://doi.org/10.1029/2002JD002308

Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39(2), 447–462. https://doi.org/10.1007/BF00648343

Lu, X., Liu, A. Z., Oberheide, J., Wu, Q., Li, T., Li, Z. H., Swenson, G. R., and Franke, S. J. (2011). Seasonal variability of the diurnal tide in the mesosphere and lower thermosphere over Maui, Hawaii (20.7°N, 156.3°W). J. Geophys. Res., 116(D17), D17103. https://doi.org/10.1029/2011JD015599

Luo, Y., Manson, A. H., Meek, C. E., Igarashi, K., and Jacobi, C. (2001). Extra long period (20-40 day) oscillations in the mesospheric and lower thermospheric winds: observations in Canada, Europe and Japan, and considerations of possible solar influences. J. Atmos. Sol. Terr. Phys., 63(9), 835–852. https://doi.org/10.1016/S1364-6826(00)00206-6

Madden, R. A., and Julian, P. R. (1971). Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28(5), 702–708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2

Madden, R. A., and Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29(6), 1109–1123. https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2

Miyoshi, Y., and Fujiwara, H. (2006). Excitation mechanism of intraseasonal oscillation in the equatorial mesosphere and lower thermosphere. J. Geophys. Res., 111(D14), D14108. https://doi.org/10.1029/2005JD006993

Mukhtarov, P., Pancheva, D., and Andonov, B. (2009). Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. J. Geophys. Res., 114(A2), A02309. https://doi.org/10.1029/2008JA013759

Pancheva, D., Mitchell, N. J., Younger, P. T., and Muller, H. G. (2003). Intra-seasonal oscillations observed in the MLT region above UK (52°N, 2°W) and ESRANGE (68°N, 21°E). Geophys. Res. Lett., 30(21), 2084. https://doi.org/10.1029/2003GL017809

Pancheva, D., Mukhtarov, P., and Smith, A. K. (2014). Nonmigrating tidal variability in the SABER/TIMED mesospheric ozone. Geophys. Res. Lett., 41(11), 4059–4067. https://doi.org/10.1002/2014GL059844

Rao, R. K., Gurubaran, S., Sathishkumar, S., Sridharan, S., Nakamura, T., Tsuda, T., Takahashi, H., Batista, P. P., Clemesha, B. R., … Mitchell, N. J. (2009). Longitudinal variability in intraseasonal oscillation in the tropical mesosphere and lower thermosphere region. J. Geophys. Res., 114(D19), D19110. https://doi.org/10.1029/2009JD011811

Reid, I. M., Spargo, A. J., and Woithe, J. M. (2014). Seasonal variations of the nighttime O(1S) and OH (8-3) airglow intensity at Adelaide, Australia. J. Geophys. Res. Atmos., 119(11), 6991–7013. https://doi.org/10.1002/2013JD020906

Scargle, J. D. (1982). Studies in astronomical time series analysis. II- Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835–853. https://doi.org/10.1086/160554

Shepherd, M. G., Evans, W. F. J., Hernandez, G., Offermann, D., and Takahashi, H. (2004). Global variability of mesospheric temperature: Mean temperature field. J. Geophys. Res., 109(D24), D24117. https://doi.org/10.1029/2004JD005054

Smith, A. K., and Marsh, D. R. (2005). Processes that account for the ozone maximum at the mesopause. J. Geophys. Res., 110(D23), D23305. https://doi.org/10.1029/2005JD006298

Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C. (2010). Temporal variations of atomic oxygen in the upper mesosphere from SABER. J. Geophys. Res., 115(D18), D18309. https://doi.org/10.1029/2009JD013434

Sridharan, S., Tsuda, T., and Gurubaran, S. (2007). Radar observations of long-term variability of mesosphere and lower thermosphere winds over Tirunelveli (8.7°N, 77.8°E). J. Geophys. Res., 112(D23), D23105. https://doi.org/10.1029/2007JD008669

Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

Vincent, R. A., Kovalam, S., Fritts, D. C., and Isler, J. R. (1998). Long-term MF radar observations of solar tides in the low-latitude mesosphere: Interannual variability and comparisons with the GSWM. J. Geophys. Res., 103(D8), 8667–8683. https://doi.org/10.1029/98JD00482

Xu, J. Y., Smith, A. K., Yuan, W., Liu, H. L., Wu, Q., Mlynczak, M. G., and Russell III, J. M. (2007). Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J. Geophys. Res., 112(D24), D24106. https://doi.org/10.1029/2007JD008546

Xue, X. H., Dou, X. K., Lei, J., Chen, J. S., Ding, Z. H., Li, T., Gao, Q., Tang, W. W., Cheng, X. W., and Wei, K. (2013). Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies. J. Geophys. Res., 118(5), 2409–2418. https://doi.org/10.1002/jgra.50200

Yang, C., Li, T., Smith, A. K., and Dou, X. (2017). The response of the southern hemisphere middle atmosphere to the madden-julian oscillation during austral winter using the specified-dynamics whole atmosphere community climate model. J. Climate, 30(20), 8317–8333. https://doi.org/10.1175/JCLI-D-17-0063.1

Yang, C. Y., Smith, A. K., Li, T., and Dou, X. K. (2018). The effect of the Madden-Julian oscillation on the mesospheric migrating diurnal tide: A study using SD-WACCM. Geophys. Res. Lett., 45(10), 5105–5114. https://doi.org/10.1029/2018GL077956

Yi, W., Xue, X. H., Chen, J. S., Dou, X. K., Chen, T. D., and Li, N. (2016). Estimation of mesopause temperatures at low latitudes using the Kunming meteor radar. Radio Sci., 51(3), 130–141. https://doi.org/10.1002/2015RS005722

Yi, W., Xue, X. H., Reid, I. M., Younger, J. P., Chen, J. S., Chen, T. D., and Li, N. (2018). Estimation of mesospheric densities at low latitudes using the Kunming meteor radar together with SABER temperatures. J. Geophys. Res., 123(4), 3183–3195. https://doi.org/10.1002/2017JA025059

Zhang, C. D. (2005). Madden-Julian oscillation. Rev. Geophys., 43(2), RG2003. https://doi.org/10.1029/2004RG000158

Zhang, X. L., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E., Mertens, C. J., and Mlynczak, M. G. (2006). Monthly tidal temperatures 20-120 km from TIMED/SABER. J. Geophys. Res., 111(A10), A10S08. https://doi.org/10.1029/2005JA011504

[1]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[2]

Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011

[3]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li