Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: XiuShu Qie, ShanFeng Yuan, HongBo Zhang, RuBin Jiang, ZhiJun Wu, MingYuan Liu, ZhuLing Sun, YunJiao Pu, JinLiang Li, Abhay Srivastava, ZiLong Ma, GaoPeng Lu, 2019: Propagation of positive, negative, and recoil leaders in upward lightning flashes, Earth and Planetary Physics, 3, 102-110. doi: 10.26464/epp2019014

2019, 3(2): 102-110. doi: 10.26464/epp2019014

ATMOSPHERIC PHYSICS

Propagation of positive, negative, and recoil leaders in upward lightning flashes

1. 

Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Science, Chinese Academy of Sciences, Beijing 100029, China

2. 

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of information Science & Technology, Nanjing 210044, China

3. 

College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 101408, China

4. 

Fujian Meteorological Service Center, Fujian Meteorological Bureau, Fuzhou 350001, China

Corresponding author: XiuShu Qie, qiex@mail.iap.ac.cn

Received Date: 2018-12-12
Web Publishing Date: 2019-03-01

Leader propagation is a fundamental issue in lightning physics. The propagation characteristics of positive leaders and negative leaders are summarized and compared based on data from high-speed camera and electromagnetic field in rocket-triggered lightning and tower-initiated lightning discharges; available channel base current data recorded in rocket-triggered lightning are also used. The negative leaders propagate in a stepped fashion accompanied by many branches. The stems ahead of the negative leader tip determine the manner and direction of the leader propagation, and even the branching and winding of the lightning channel. The impulsive current, electromagnetic field, and related optical images suggest that the positive leader may develop in a step-like fashion at its initial stage of triggered lightning. However, the stepping processes of the positive leader are obviously different from those of the negative leader. Tower-initiated lightning revealed that the most conspicuous characteristics of the stepwise positive leader involve the intermittent brush-like corona zone in front of the leader tip and the luminosity enhancement of the channel behind the tip. In rocket-triggered lightning flashes, the charge transferred during an individual step for the negative leader was nearly an order greater than for the positive counterpart. The successive streamers ahead of the leader tip are essential for both negative and positive leader propagation, and the stems could be formed from one or more streamers in the previous negative streamer zone with the main leader channel dim. High-resolution observation of tower lightning also revealed a new type of bidirectional recoil leader, with polarity contrary to the traditional one, traversing in negative channels associated with tower-initiated and rocket-triggered lightning.

Key words: lightning propagation, negative leader, positive leader, recoil leader

Berger, K., and Vogelsanger, E. (1966). Photographische Blitzuntersuchungen der Jahre 1955–1965 auf dem Monte San Salvatore. Bull. Schweiz. Elektrotech, Ver., 57, 599–620

Biagi, C. J., Jordan, D. M., Uman, M. A., Hill, J. D., Beasley, W. H., and Howard, J. (2009). High-speed video observations of rocket-and-wire initiated lightning. Geophys. Res. Lett., 36(15), L15801. https://doi.org/10.1029/2009GL038525

Biagi, C. J., Uman, M. A., Hill, J. D., and Jordan, D. M. (2011). Observations of the initial, upward-propagating, positive leader steps in a rocket-and-wire triggered lightning discharge. Geophys. Res. Lett., 38(24), L24809. https://doi.org/10.1029/2011gl049944

Biagi, C. J., Uman, M. A., Hill, J. D., and Jordan, D. M. (2014). Negative leader step mechanisms observed in altitude triggered lightning. J. Geophys. Res. Atmos., 119(13), 8160–8168. https://doi.org/10.1002/2013JD020281

Fan, Y. F., Lu, G. P., Jiang, R. B., Zhang, H. B., Li, X., Liu, M. Y., Qiu, X. S., Zheng, D., Lyu, W. T., … Zhang, Y. J. (2018). Characteristics of electromagnetic signals during the initial stage of negative rocket-triggered lightning. J. Geophys. Res. Atmos., 123(20), 11625–11636. https://doi.org/10.1029/2018JD028744

Gallimberti, I. (1979). The mechanism of long spark formation. J. Phys. Colloq., 40(C7), C7-193–C7-250. https://doi.org/10.1051/jphyscol:19797440

Gamerota, W. R., Idone, V. P., Uman, M. A., Ngin, T., Pilkey, J. T., and Jordan, D. M. (2014). Dart-stepped-leader step formation in triggered lightning. Geophys. Res. Lett., 41(6), 2204–2211. https://doi.org/10.1002/2014GL059627

Gorin, B. N., Levitov, V. I., and Shkilev, A. V. (1976). Some principles of leader discharge of air gaps with a strong non-uniform field. IEE Conference Publication, 143, 274–278

Jiang, R. B., Qie, X. S., Wang, C. X., and Yang, J. (2013). Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning. Atmos. Res., 129-130, 90–96. https://doi.org/10.1016/j.atmosres.2012.09.005

Jiang, R. B., Wu, Z. J., Qie, X. S., Wang, D. F., and Liu, M. Y. (2014). High-speed video evidence of a dart leader with bidirectional development. Geophys. Res. Lett., 41(14), 5246–5250. https://doi.org/10.1002/2014GL060585

Jiang, R. B., Qie, X. S., Zhang, H. B., Liu, M. Y., Sun, Z. L., Lu, G. P., Wang, Z. C., and Wang, Y. (2017). Channel branching and zigzagging in negative cloud-to-ground lightning. Sci. Rep., 7(1), 3457. https://doi.org/10.1038/s41598-017-03686-w

Kostinskiy, A. Y., Syssoev, V. S., Bogatov, N. A., Mareev, E. A., Andreev, M. G., Bulatov, M. U., Sukharevsky, D. I., and Rakov, V. A. (2018). Abrupt elongation (stepping) of negative and positive leaders culminating in an intense corona streamer burst: Observations in long sparks and implications for lightning. J. Geophys. Res. Atmos., 123(10), 5360–5375. https://doi.org/10.1029/2017JD027997

Lalande, P., Bondiou-Clergerie, A., Laroche, P., Eybert-Berard, A., Berlandis, J. -P., Bador, B., Bonamy, A., Uman, M. A., and Rakov, V. A. (1998). Leader properties determined with triggered lightning techniques. J. Geophys. Res. Atmos., 103(D12), 14109–14115. https://doi.org/10.1029/97JD02492

Lu, G. P., Jiang, R. B., Qie, X. S., Zhang, H. B., Sun, Z. L., Liu, M. Y., Wang, Z. C., and Liu, K. (2014). Burst of intracloud current pulses during the initial continuous current in a rocket-triggered lightning flash. Geophys. Res. Lett., 41(24), 9174–9181. https://doi.org/10.002/2014GL062127

Lu, G. P., Zhang, H. B., Jiang, R. B., Fan, Y. F., Qie, X. S., Liu, M. Y., Sun, Z. L., Wang Z. C., Tian, Y., and Liu, K. (2016). Characterization of initial current pulses in negative rocket-triggered lightning with sensitive magnetic sensor. Radio Sci., 51(9), 1432–1444. https://doi.org/10.1002/2016RS005945

Mazur, V. (2002). Physical processes during development of lightning flashes. C. R. Phys., 3(10), 1393–1409. https://doi.org/10.1016/S1631-0705(02)01412-3

Mazur, V., and Ruhnke, L. H. (2011). Physical processes during development of upward leaders from tall structures. J. Electrostat., 69(2), 97–110. https://doi.org/10.1016/j.elstat.2011.01.003

Mazur, V., Ruhnke, L. H., Warner, T. A., and Orville, R. E. (2013). Recoil leader formation and development. J. Electrostat., 71(4), 763–768. https://doi.org/10.1016/j.elstat.2013.05.001

Ogawa, T., and Brook, M. (1964). The mechanism of the intracloud lightning discharge. J. Geophys. Res., 69(24), 5141–5150. https://doi.org/10.1029/JZ069i024p05141

Petersen, D. A., and Beasley, W. H. (2013). High-speed video observations of a natural negative stepped leader and subsequent dart-stepped leader. J. Geophys. Res. Atmos., 118(21), 12110–12119. https://doi.org/10.1002/2013JD019910

Pu, Y. J., Jiang, R. B., Qie, X. S., Liu, M. ,Y. Zhang, H. B., Fan, Y. F., and Wu, X. K. (2017). Upward negative leaders in positive triggered lightning: Stepping and branching in the initial stage. Geophys. Res. Lett., 44(13), 7029–7035. https://doi.org/10.1002/2017GL074228

Qi, Q., Lu, W. T., Ma, Y., Chen, L. W., Zhang, Y. J., and Rakov, V. A. (2016). High-speed video observations of the fine structure of a natural negative stepped leader at close distance. Atmos. Res., 178-179, 260–267. https://doi.org/10.1016/j.atmosres.2016.03.027

Qie, X. S., and Kong, X. Z. (2007). Progression features of a stepped leader process with four grounded leader branches. Geophys. Res. Lett., 34(6), L06809. https://doi.org/10.1029/2006GL028771

Qie, X. S., Zhang, Q. L., Zhou, Y. J., Feng, G. L., Zhang, T. L., Yang, J., Kong, X. Z., Xiao, Q. F., and Wu, S. (2007). Artificially triggered lightning and its characteristic discharge parameters in two severe thunderstorms. Sci. China Ser. D Earth Sci., 50(8), 1241–1250. https://doi.org/10.1007/s11430-007-0064-2

Qie, X. S., Jiang, R. B., Wang, C. X., Yang, J., Wang, J. F., and Liu, D. X. (2011). Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash. J. Geophys. Res. Atmos., 116(D10), D10102. https://doi.org/10.1029/2010JD015331

Qie, X. S., Pu, Y. J., Jiang, R. B., Sun, Z. L., Liu, M. Y., Zhang, H. B., Li, X., Lu, G. P., and Tian, Y. (2017). Bidirectional leader development in a preexisting channel as observed in rocket-triggered lightning flashes. J. Geophys. Res. Atmos., 122(2), 586–599. https://doi.org/10.1002/2016JD025224

Stolzenburg, M., Marshall, T. C., Karunarathne, S., Karunarathna, N., and Orville, R. E. (2015). Transient luminosity along negative stepped leaders in lightning. J. Geophys. Res. Atmos., 120(8), 3408–3435. https://doi.org/10.1002/2014jd022933

Sun, Z. L., Qie, X. S., Jiang, R. B., Liu, M. Y., Wu, X. K., Wang, Z. C., Lu, G. P., and Zhang, H. B. (2014). Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation. J. Geophys. Res. Atmos., 119(23), 13388–13399. https://doi.org/10.1002/2014JD022100

Tran, M. D., Rakov, V. A., and Mallick, S. (2014). A negative cloud-to-ground flash showing a number of new and rarely observed features. Geophys. Res. Lett., 41(18), 6523–6529. https://doi.org/10.1002/2014GL061169

Wang, Y., Qie, X. S., Wang, D. F., Liu, M. Y., Su, D. B., Wang, Z. C., Liu, D. X., Wu, Z. J., Sun, Z. L., and Tian, Y. (2016). Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes. Atmos. Res., 171, 121–132. https://doi.org/10.1016/j.atmosres.2015.12.012

Wang, Z. C., Qie, X. S., Jiang, R. B., Wang, C. X., Lu, G. P., Sun, Z. L., Liu, M. Y., and Pu, Y. J. (2016). High-speed video observation of stepwise propagation of a natural upward positive leader. J. Geophys. Res. Atmos., 121(24), 14307–14315. https://doi.org/10.1002/2016JD025605

Warner, T. A. (2012). Observations of simultaneous upward lightning leaders from multiple tall structures. Atmos. Res., 117, 45–54. https://doi.org/10.1016/j.atmosres.2011.07.004

Willett, J. C., Davis, D. A., and Laroche, P. (1999). An experimental study of positive leaders initiating rocket-triggered lightning. Atmos. Res., 51(3-4), 189–219. https://doi.org/10.1016/S0169-8095(99)00008-3

Williams, E. R. (2006). Problems in lightning physics–the role of polarity asymmetry. Plasma Sources Sci. Technol., 15(2), S91–S108. https://doi.org/10.1088/0963-0252/15/2/S12

Yang, J., Qie, X. S., Zhang, G. S., Zhang, Q. L., Feng, G. L., Zhao, Y., and Jiang, R. B. (2010). Characteristics of channel base currents and close magnetic fields in triggered flashes in SHATLE. J. Geophys. Res. Atmos., 115(D23), D23102. https://doi.org/10.1029/2010JD014420

Zhang, Y., Krehbiel, P. R., Zhang, Y. J., Lu, W. T., Zheng, D., Xu, L. T., and Huang, Z. G. (2017). Observations of the initial stage of a rocket-and-wire-triggered lightning discharge. Geophys. Res. Lett., 44(9), 4332–4340. https://doi.org/10.1002/2017GL072843

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Propagation of positive, negative, and recoil leaders in upward lightning flashes

XiuShu Qie, ShanFeng Yuan, HongBo Zhang, RuBin Jiang, ZhiJun Wu, MingYuan Liu, ZhuLing Sun, YunJiao Pu, JinLiang Li, Abhay Srivastava, ZiLong Ma, GaoPeng Lu