Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016

2019, 3(2): 126-135. doi: 10.26464/epp2019016

ATMOSPHERIC PHYSICS

Application of cloud multi-spectral radiances in revealing cloud physical structures

Key Laboratory for Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Juan Huo, huojuan@mail.iap.ac.cn

Received Date: 2019-01-31
Web Publishing Date: 2019-03-01

The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method (the smallest-radiance-distance method, SRaDM) of revealing the physical structures of clouds. The method is based on multi-spectral radiances measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua. The principle and methodology of SRaDM is deduced and provided in this paper. Correlation analysis based on data from MODIS and Cloud Profiling Radar (onboard CloudSat), collected from January 2007 to December 2010 over an ocean area (15°N–45°N, 145°E–165°E), led to selection of radiances at 13 wavebands of MODIS that demonstrated high sensitivity to cloud physical structures; radiances at the selected wavebands were subjected to SRaDM. The Standardized Euclidean distance is introduced to quantify the degree of changes in multi-spectral radiances (termed Drd) and in physical structures (termed Dst) between cloud profiles. Statistics based on numerous cloud profiles show that Drd decreases monotonically with a decrease in Dst, which implies that small Drd always accompanies small Dst. According to the law of Drd and Dst, the new method, SRaDM, for revealing physical structures of clouds from the collocation of cloud profiles of similar multi-spectral radiances, is presented. Then, two successful experiments are presented in which cloud physical structures are captured using multi-spectral radiances. SRaDM provides a way to obtain knowledge of the physical structures of clouds over relatively larger areas, and is a new approach to obtaining 3D cloud fields.

Key words: cloud, physical structure, radiance, radar

Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M. (2008). Cloud detection with MODIS. Part II: validation. J. Atmos. Oceanic Technol., 25(7), 1073–1086. https://doi.org/10.1175/2007JTECHA1053.1

Alexandrov, M. D., Marshak, A., and Ackerman, A. S. (2010). Cellular statistical models of broken cloud fields. Part I: theory. J. Atmos. Sci., 67(7), 2125–2151. https://doi.org/10.1175/2010JAS3364.1

Barker, H. W., Jerg, M. P., Wehr, T., Kato, S., Donovan, D., and Hogan, R. J. (2011). A 3D cloud-construction algorithm for the EarthCARE satellite mission. Quart. J. Roy. Meteor. Soc., 137(657), 1042–1058. https://doi.org/10.1002/qj.824

Baum, B. A., Paul Menzel, W., Frey, R. A., Tobin, D. C., Holz, R. E., and Ackerman, S. A. (2012). MODIS cloud-top property refinements for Collection 6. J. Appl. Meteor. Climatol., 51(6), 1145–1163. https://doi.org/10.1175/JAMC-D-11-0203.1

Frey, R. A., Ackerman, S. A., Liu, Y. H., Strabala, K. I., Zhang, H., Key, J. R., and Wang, X. G. (2008). Cloud detection with MODIS. Part I: improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25(7), 1057–1072. https://doi.org/10.1175/2008JTECHA1052.1

Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G., Vavriv, D., Vinogradov, V., and Volkov, V. (2015). A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters-description of system and data processing. J. Atmos. Oceanic Technol., 32(4), 675–690. https://doi.org/10.1175/JTECH-D-14-00066.1

Heymsfield, A., Winker, D., Avery, M., Vaughan, M., Diskin, G., Deng, M., Mitev, V., and Matthey, R. (2014). Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to -86°C: implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol., 53(2), 479–505. https://doi.org/10.1175/JAMC-D-13-087.1

Khairoutdinov, M., and Kogan, Y. (2000). A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128(1), 229–243. https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2

Marchand, R. (2013). Trends in ISCCP, MISR, and MODIS cloud-top-height and optical-depth histograms. J. Geophys. Res. Atmos., 118(4), 1941–1949. https://doi.org/10.1002/jgrd.50207

Nakajima, T., and King, M. D. (1990). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements, Part I: theory. J. Atmos. Sci., 47(15), 1878–1893. https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2

Prigarin, S. M., and Marshak, A. (2009). A simple stochastic model for generating broken cloud optical depth and cloud-top height fields. J. Atmos. Sci., 66(1), 92–104. https://doi.org/10.1175/2008JAS2699.1

Sekelsky, S. M., Ecklund, W. L., Firda, J. M., Gage, K. S., and McIntosh, R. E. (1999). Particle size estimation in ice-phase clouds using multifrequency radar reflectivity measurements at 95, 33, and 2.8 GHz. J. Appl. Meteor., 38(1), 5–28. https://doi.org/10.1175/1520-0450(1999)038<0005:PSEIIP>2.0.CO;2

Stevens, B., Moeng, C. H., and Sullivan, P. P. (1999). Large-eddy simulations of radiatively driven convection: sensitivities to the representation of small scales. J. Atmos. Sci., 56(23), 3963–3984. https://doi.org/10.1175/1520-0469(1999)056<3963:LESORD>2.0.CO;2

Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y. X., and Powell, K. A. (2009). Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26(11), 2310–2323. https://doi.org/10.1175/2009JTECHA1281.1

[1]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[2]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[3]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[4]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[5]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics. doi: 10.26464/epp2019025

[6]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[7]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Application of cloud multi-spectral radiances in revealing cloud physical structures

Juan Huo, DaRen Lu, WenJing Xu