Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

2019, 3(4): 314-329. doi: 10.26464/epp2019033


Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation


Institute of Marine Geology and Resources, Zhejiang University, Zhoushan Zhejiang 316021, China


Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China


State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China


South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

Corresponding author: Chun-Feng Li,

Received Date: 2019-02-27
Web Publishing Date: 2019-07-01

The northeastern margin of the South China Sea (SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high-velocity anomalies are widespread, which complicate the nature of the margin here. To better understand crustal seismic velocities, lithology, and geophysical properties, we present an S-wave velocity (VS) model and a VP/VS model for the northeastern margin by using an existing P-wave velocity (VP) model as the starting model for 2-D kinematic S-wave forward ray tracing. The Mesozoic sedimentary sequence has lower VP/VS ratios than the Cenozoic sequence; in between is a main interface of P-S conversion. Two isolated high-velocity zones (HVZ) are found in the lower crust of the continental slope, showing S-wave velocities of 4.0–4.2 km/s and VP/VS ratios of 1.73–1.78. These values indicate a mafic composition, most likely of amphibolite facies. Also, a VP/VS versus VP plot indicates a magnesium-rich gabbro facies from post-spreading mantle melting at temperatures higher than normal. A third high-velocity zone (VP : 7.0–7.8 km/s; VP/VS: 1.85–1.96), 70-km wide and 4-km thick in the continent-ocean transition zone, is most likely to be a consequence of serpentinization of upwelled upper mantle. Seismic velocity structures and also gravity anomalies indicate that mantle upwelling/ serpentinization could be the most severe in the northeasternmost continent-ocean boundary of the SCS. Empirical relationships between seismic velocity and degree of serpentinization suggest that serpentinite content decreases with depth, from 43% in the lower crust to 37% into the mantle.

Key words: South China Sea, continental margin, crustal structure, converted S-wave, VP/VS ratio, lithology, serpentinization

Au, D., and Clowes, R. M. (1984). Shear-wave velocity structure of the oceanic lithosphere from ocean bottom seismometer studies. Geophys. J. R. astr. Soc., 77(1), 105–123.

Bautista, B. C., Bautista, M. L. P., Oike, K., Wu, F. T., and Punongbayan, R. S. (2001). A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339(3-4), 279–310.

Briais, A., Patriat, P., and Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of Southeast Asia. J. Geophys. Res. Solid Earth, 98(B4), 6299–6382.

Browning, P. (1984). Cryptic variation within the cumulate sequence of the Oman ophiolite: magma chamber depth and petrological implications. Geol. Soc. Spec. Publ., 13(1), 71–82.

Castagna, J. P., Batzle M. L., and Eastwood R. L. E. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50(4), 571–581.

Chian, D., Louden K. E., Minshull, T. A., and Whitmarsh, R. B. (1999). Deep structure of the ocean-continent transition in the Southern Iberia abyssal plain from seismic refraction profiles: Ocean Drilling Program (Legs 149 and 173) transect. J. Geophys. Res. Solid Earth, 104(B4), 7443–7462.

Christensen, N. I. (1966). Elasticity of ultrabasic rocks. J. Geophys. Res., 71(24), 5921–5931.

Christensen, N. I., and Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. Solid Earth, 100(B6), 9761–9788.

Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. J. Geophys. Res. Solid Earth, 101(B2), 3139–3156.

Dean, S. M., Minshull, T. A., Whitmarsh, R. B., and Louden, K. E. (2000). Deep structure of the ocean-continent transition in the Southern Iberia Abyssal Plain from seismic refraction profiles: the IAM-9 transect at 40°20’N. J. Geophys. Res. Solid Earth, 105(B3), 5859–5885.

Digranes, P., Mjelde, P., Kodaira, S., Shimamura, H., Kanazawa, T., Shiobara, H., and Berg, E. W. (1998). A regional shear-wave velocity model in the central Vøring basin, N. Norway, using three-component ocean bottom seismographs. Tectonophysics, 293(3-4), 157–174.

Ding, W. W., Li, J. B., Clift, P. D., and IODP Expedition 349 Scientists. (2016). Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: constraints from multi-channel seismic data and IODP Expedition 349. J. Asian Earth Sci., 115, 97–113.

Eccles, J. D., White, R. S., and Christie, P. A. F. (2009). Identification and inversion of converted shear waves: case studies from the European North Atlantic continental margins. Geophys. J. Int., 179(1), 381–400.

Evans, B. W., Hattori, K., and Baronnet, A. (2013). Serpentinite: what, why, where?. Elements, 9(2), 99–106.

Fan, C. Y., Xia, S. H., Zhao, F., Sun, J. L., Cao, J. H., Xu, H. L., and Wan, K. Y. (2017). New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts. Geochem. Geophys. Geosyst., 18(6), 2216–2239.

Gao, J. W., Wu, S. G., McIntosh, K., Mi, L. J., Yao, B. C., Chen, Z. M., and Jia, L. K. (2015). The continent-ocean transition at the mid-northern margin of the South China Sea. Tectonophysics, 654, 1–19.

Gardner, G. H. F., Gardner, L. W., and Gregory, A. R. (1974). Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–780.

Hacker, B. R., and Abers, G. A. (2004). Subduction factory 3: An excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst., 5(1), Q01005.

Hall, R., and Spakman, W. (2002). Subducted slabs beneath the eastern Indonesia -Tonga region: insights from tomography. Earth Planet. Sci. Lett., 201(2), 321–336.

He, L. J., Xiong, L. P., and Wang, J. Y. (1998). The geothermal characteristics in South China Sea. China Offshore Oil and Gas, 12(2), 87–90.

Holbrook, W. S., Mooney, W. D., and Christensen, N. I. (1992). The seismic velocity structure of the deep continental crust. In D. M. Fountion, et al. (Eds.), Continental Lower Crust (pp. 1-43). Amsterdam: Elsevier.222

Hu, D. K., Zhou, D., Wu, X. J., and He, M. (2008). Origin of high magnetic anomaly belt in northeastern South China Sea as indicated by geophysical inversion. J. Trop. Oceanograph. (in Chinese) , 27(1), 32–37.

Korenaga, J., Holbrook, W. S., Kent, G. M., Kelemen, P. B., Detrick, R. S., Larsen, H. C., Hopper, J. R., and Dahl-Jensen, T. (2000). Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J. Geophys. Res. Solid Earth, 105(B9), 21591–21614.

Leloup, P. H., Lacassin, R., Tapponnier, P., Schárer, U., Zhong, D. L., Liu, X. H., Zhang, L. S., Ji, S. C., and Trinh, P. T. (1995). The Ailao Shan-Red river shear zone (Yunnan, China), tertiary transform boundary of Indochina. Tectonophysics, 251(1-4), 3–84.

Li, C.-F., Zhou, Z. Y., Hao, H. J., Chen, H. J., Wang, J. L., Chen, B., and Wu, J. S. (2008). Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. J. Asian Earth Sci., 31(4-6), 546–561.

Li, C.-F., Shi, X. B., Zhou, Z. Y., Li, J. B., Geng, J. H., and Chen, B. (2010). Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys. J. Int., 182(3), 1229–1247.

Li, C.-F., and Song, T. R. (2012). Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chin. Sci. Bull., 57(24), 3165–3181.

Li, C.-F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y. J., Zhao, X. X., Liu, Q. S., Kulhanek, D. K., … Zhang, G. L. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst., 15(2), 4958–4983.

Li, C.-F., and Wang, J. (2016). Variations in Moho and Curie depths and heat flow in eastern and southeastern Asia. Mar. Geophys. Res., 37(1), 1–20.

Li, Y. Q., Yan, P., Wang, Y. L., and Zhong, G. J. (2017). Deep crustal structure revealed by ocean bottom seismic profile OBS2015-1 in southwestern Dongsha waters. J. Trop. Oceanogr. (in Chinese) , 36(5), 83–92.

Mjelde, R., Raum, T., Digranes, P., Shimamura, H., Shiobara, H., and Kodaira, S. (2003). Vp/Vs ratio along the Vøring margin, NE Atlantic, derived from OBS Data: implications on lithology and stress field. Tectonophysics, 369(3-4), 175–197.

Neidell, N. S. (1985). Land applications of shear waves. Leading Edge, 4(11), 32–44.

Nissen, S. S., Hayes, D. E., Buhl, P., Diebold, J., Yao, B. C., Zeng, W. J., and Chen, Y. Q. (1995). Deep penetration seismic soundings across the northern margin of the South China Sea. J. Geophys. Res. Solid Earth, 100(B11), 22407–22433.

Pubellier, M., Monnier, C., Maury, R., and Tamayo, R. (2004). Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics, 392(1-4), 9–36.

Ru, K., and Pigott, J. D. (1986). Episodic rifting and subsidence in the South China Sea. AAPG Bull., 70(9), 1136–1155.

Rudnick, R. L., and Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 33(3), 267–309.

Sandwell, D. T., and Smith, W. H. F. (2009). Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J. Geophys. Res. Solid Earth, 114(B1), B01411.

Sandwell, D. T., Garcia, E., Soofi, K., Wessel, P., Chandler, M., and Smith, W. H. F. (2013). Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge, 32(8), 892–899.

Sato, H., and Ito, K. (2001). H2O fluid distribution in mantle rock at 1 GPa?: constraints from Vs-Vp/Vs diagram. Bull. Earthq. Res. Inst. Univ., Tokyo, 76(3), 305–310.

Savva, D., Pubellier, M., Franke, D., Chamot-Rooke, N., Meresse, F., Steuer, S., and Auxietre, J. L. (2014). Different expressions of rifting on the South China Sea margins. Mar. Pet. Geol., 58, 579–598.

Shi, H. S., and Li, C. F. (2012). Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea. Int. Geol. Rev., 54(15), 1801–1828.

Shi, X. B., Qiu, X. L., Xia, K. Y., and Zhou, D. (2003). Heat flow characteristics and its tectonic significance of South China Sea. J. Trop. Oceanogr. (in Chinese) , 22(2), 63–73.

Song, T. R. (2016). The crustal structure and lithosphere rupture mechanism of the continental-ocean transition zone of the South China Sea [Ph. D. thesis]. Shanghai: Tongji Unversity.222

Song, X. X., Li, C. F., Yao, Y. J., and Shi, H. S. (2017). Magmatism in the evolution of the South China Sea: geophysical characterization. Mar. Geol., 394, 4–15.

Stein, C. A., and Stein, S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391), 123–129.

Sun, Z., Sun, L. T., Zhou, D., Cai, D. S., Li, X. S., Zhong, Z. H., Jiang, J. Q., and Fan, H. (2009). Discussion on the South China Sea evolution and lithospheric breakup through 3d analogue modeling. Earth Sci.-J. China Univ. Geosci. (in Chinese) , 34(3), 435–447.

Tan, P. C., Breivik, A. J., Trønnes, R. G., Mjelde, R., Azuma, R., and Eide, S. (2016). Crustal structure and origin of the Eggvin Bank west of Jan Mayen, NE Atlantic. J. Geophys. Res. Solid Earth, 122(1), 43–62.

Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P. (1982). Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10(2), 611–616.<611:petian>;2

Taylor, B., and Hayes, D. E. (1980). The tectonic evolution of the South China Basin. In D. E. Hayes (Ed.), The Tectonic and Geologic Gvolution of Southeast Asian Seas and Islands (pp. 89-104). Washington: AGU.

Taylor, B., and Hayes, D. E. (1983). Origin and history of the South China Sea basin. In D. E. Hayes (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands (pp. 23-56). Washington: AGU.

Wan, K. Y., Xia, S. H., Cao, J. H., Sun, J. L., and Xu, H. L. (2017). Deep seismic structure of the northeastern South China Sea: origin of a high-velocity layer in the lower crust. J. Geophys. Res. Solid Earth, 122(4), 2831–2858.

Wan, X. L. (2018). Seismic velocity structures of the transitional crust across the northeastern margin of the South China Sea [Master’s thesis]. Shanghai: Tongji University.222

Wang, T. K., Chen, M. K., Lee, C. S., and Xia, K. Y. (2006). Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3-4), 237–254.

Wei, X. D., Zhao, M. H., Ruan, A. G., Qiu, X. L., Hao, T. Y., Wu, Z. L., Ao, W., and Xiong, H. (2011). Crustal structure of shear waves and its tectonic significance in the mid-northern continental margin of the South China Sea. Chinese J. Geophys. (in Chinese) , 54(12), 3150–3160.

Wessel, P., and Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos., 79(47), 579.

White, R. S., McKenzie, D., and O’Nions, R. K. (1992). Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. Solid Earth, 97(B13), 19683–19715.

Xia, S. H., Fan, C. Y., Sun, J. L., Cao, J. H., Zhao, F., and Wan, K. Y. (2017). Characteristics of late Cenozoic magmatic activities on the northern margin of South China Sea and their tectonic implications. Mar. Geol. Quat. Geol. (in Chinese) , 37(6), 25–33.

Yan, P., Zhou, D., and Liu, Z. S. (2001). A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1), 1–21.

Yan, P., Deng, H., Liu, H. L., Zhang, Z. R., and Jiang, Y. K. (2006). The temporal and spatial distribution of volcanism in the South China Sea region. J. Asian Earth Sci., 27(5), 647–659.

Yin, Z. X., Lai, M. H., Xiong, S. B., Liu, H. B., Teng, J. W., and Kong, X. R. (1999). Crustal structure and velocity distribution from deep seismic sounding along the profile of Lianxian-Boluo-Gangkou in South China. Chinese J. Geophys. (in Chinese) , 42(3), 383–392.

Zelt, C. A., and Smith, R. B. (1992). Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int., 108(1), 16–34.

Zhang, L., Zhao, M. H., Qiu, X. L., and Wang, Q. (2016). Recent progress of converted shear-wave phase identification in Nansha Block using ocean bottom seismometers data. J. Trop. Oceanogr. (in Chinese) , 35(1), 61–71.

Zhao, M. H., Qiu, X. L., Xia, S. H., Xu, H. L., Wang, P., Wang, T. K., Lee, C. S., and Xia, K. Y. (2010). Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data. Tectonophysics, 480(1-4), 183–197.

Zhou, D., Wang, W. Y., Wang, J. L., Pang, X., Cai, D. S., and Sun, Z. (2006). Mesozoic subduction-accretion zone in northeastern South China Sea inferred from geophysical interpretations. Sci. China Ser. D., 49(5), 471–482.


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049


Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027


ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026


Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026


XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052


Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044


Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002


Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics. doi: 10.26464/epp2020045


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022


KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005


XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021


Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004