Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Tian, T., Chang, Z., Sun, L. F., Bai, J. S., Sha, X. M., and Gao, Z. (2019). Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms. Earth Planet. Phys., 3(5), 380–390.doi: 10.26464/epp2019039

2019, 3(5): 380-390. doi: 10.26464/epp2019039


Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms


Mailbox 5111, Beijing 100094, China


National Space Science center, Chinese Academy of Sciences, Beijing 100190, China

Corresponding author: Zheng Chang,

Received Date: 2019-05-10
Web Publishing Date: 2019-09-01

Geomagnetic storms and substorms play a central role in both the daily life of mankind and in academic space physics. The profiles of storms, especially their initial phase morphology and the intensity of their substorms under different interplanetary conditions, have usually been ignored in previous studies. In this study, 97 intense geomagnetic storms (Dstmin ≤ –100 nT) between 1998 and 2018 were studied statistically using the double superposed epoch analysis (DSEA) and normalized superposed epoch analysis (NSEA) methods. These storms are categorized into two types according to different interplanetary magnetic field (IMF) Bz orientations: geomagnetic storms whose IMF is northward, both upstream and downstream relative to the interplanetary shock, and geomagnetic storms whose upstream and downstream IMF is consistently southward. We further divide these two types into two subsets, by different geomagnetic storm profiles: Type I/Type II — one/two-step geomagnetic storms with northward IMF both upstream and downstream of the interplanetary shock; Type III/TypeIV — one/two-step geomagnetic storms with southward IMF both upstream and downstream of the interplanetary shock. The results show that: (1) geomagnetic storms with northward IMF both upstream and downstream of the interplanetary shock have a clear initial phase; geomagnetic storms with southward IMF in both upstream and downstream of the interplanetary shock do not; (2) the IMF is an important controlling factor in affecting the intensity characteristics of substorms. When Bz is positive before and after the interplanetary shock arrival, the Auroral Electrojet (AE) index changes gently during the initial phase of geomagnetic storms, the median value of AE index is maintained at 500–1000 nT; (3) when Bz is negative before and after the interplanetary shock arrival, the AE index rises rapidly and reaches its maxmum value about one hour after storm sudden commencements (SSC), although the time is scaled between reference points and the maximum value of AE is usually greater than 1,000 nT, representing intense substorms; (4) for most cases, the Dst0 usually reaches its minimum at least one hour after Bz. These results are useful in improving contemporary space weather models, especially for those that address geomagnetic storms and substorms.

Key words: geomagnetic storms, substorms, normalized superposed epoch analysis, initial phase, IMF Bz

Akasofu, S. I., and Chapman, S. (1963). The development of the main phase of magnetic storms. J. Geophys. Res., 68(1), 125–129.

Brueckner, G. E., Delaboudiniere, J. P., Howard, R. A., Paswaters, S. E., St. Cyr, O. C., Schwenn, R., Lamy, P., Simnett, G. M., Thompson, B., and Wang, D. (1998). Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys. Res. Lett., 25(15), 3019–3022.

Burton, R. K., McPherron, R. L., and Russell, C. T. (1975). An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80(31), 4204–4214.

Cane, H. V., Richardson I. G., and St. Cyr, O. C. (2000). Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys. Res. Lett., 27(21), 3591–3594.

Dessler, A. J., and Parker, E. N. (1959). Hydromagnetic theory of geomagnetic storms. J. Geophys. Res., 64(12), 2239–2252.

Farrugia, C. J., Jordanova, V. K., Thomsen, M. F., Lu, G., Cowley, S. W. H., and Ogilvie, K. W. (2006). A two-ejecta event associated with a two-step geomagnetic storm. J. Geophys. Res., 111(A11), A11104.

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M. (1994). What is a geomagnetic storm?. J. Geophys. Res., 99(A4), 5771–5792.

Gonzalez, W. D., Tsurutani, B. T., and Clúa de Gonzalez, A. L. (1999). Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88(3-4), 529–562.

Gonzalez, W. D., and Echer, E. (2005). A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms. Geophys. Res. Lett., 32(18), L18103.

Gopalswamy, N., Lara, A., Lepping, R. P., Kaiser, M. L., Berdichevsky, D., and St. Cyr, O. C. (2000). Interplanetary accelera-tion of coronal mass ejections. Geophys. Res. Lett., 27(2), 145–148.

Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, S. J. (1991). Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res., 96(A5), 7831–7839.

Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D., and Gjerloev, J. W. (2016). Supersubstorms (SML<− 2500 nT): Magnetic storm and solar cycle dependences. J. Geophys. Res., 121(8), 7805–7816.

Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B. T., Daglis, I. A., Brekke, A., and Masuda, S. (1998). Two-step devel-opment of geomagnetic storms. J. Geophys. Res., 103(A4), 6917–6922.

Lakhina, G. S., Alex, S., Mukherjee, S., and Vichare, G. (2006). On magnetic storms and substorms. In Proceedings of ILWS Workshop 2006. GOA.222

Le, G. M., Tang. Y. H., Zheng, L., and Liu, L. G. (2010). An analysis of interplanetary sources of geomagnetic storm during November 7-8, 1998. Chin. Sci. Bull., 55(9), 851–856.

Lee, D. Y., Lyons. L. R., Weygand. J. M., and Wang, C. P. (2007). Reasons why some solar wind changes do not trigger sub-storms. J. Geophys. Res., 112(A6), A06240.

Lee, D. Y., Choi, K. C., Ohtani, S., Lee, J. H., Kim, K. C., Park, K. S., and Kim, K. H. (2010). Can intense substorms occur under northward IMF conditions?. J. Geophys. Res., 115(A1), A01211.

Lyons, L. R., Lee, D. Y., Zou, S., Wang, C. P., Kozyra, J. U., Weygand, J. M., and Mende, S. B. (2008). Dynamic pressure enhancements as a cause of large-scale stormtime substorms. J. Geophys. Res., 113(A8), A08215.

Ma, X.-H., Zong, Q.-G., and Liu, Y. (2019). The intense substorm incidence in response to interplanetary shock impacts and influence on energetic electron fluxes at geosynchronous orbit. J. Geophys. Res..

O’Brien, T. P., and McPherron, R. L. (2000). An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay. J. Geophys. Res., 105(A4), 7707–7720.

Partamies, N., Juusola, L., Tanskanen, E., Kauristie, K., Weygand, J. M., and Ogawa, Y. (2011). Substorms during different storm phases. Ann Geophys., 29(11), 2031–2043.

Partamies, N., Juusola, L., Tanskanen, E., and Kauristie, K. (2013). Statistical properties of substorms during different storm and solar cycle phases. Ann Geophys., 31(2), 349–358.

Richardson, I. G., and Zhang, J. (2008). Multiple-step geomagnetic storms and their interplanetary drivers. Geophys. Res. Lett., 35(6), L06S07.

Russell, C. T., McPherron, R. L., and Burton, R. K. (1974). On the cause of geomagnetic storms. J. Geophys. Res., 79(7), 1105–1109.

Srivastava, N., and Venkatakrishnan, P. (2004). Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J. Geophys. Res., 109(A10), A10103.

Tsurutani, B. T., and Gonzalez, W. D. (1997). The interplanetary causes of magnetic storms: a review. In B. T. Tsurutani, et al. (Eds.), Magnetic Storms (pp. 77-89). Washington, D. C.: the American Geophysical Union.

Tsurutani, B. T., Hajra, R., Echer, E., and Gjerloev, J. W. (2015). Extremely intense (SML≤–2500 nT) substorms: isolated events that are externally triggered?. Ann. Geophys., 33(5), 519–524.

Vichare, G., Alex, S., and Lakhina, G. S. (2005). Some characteristics of intense geomagnetic storms and their energy budget. J. Geophys. Res., 110(A3), A03204.

Wu, C. C., and Lepping, R. P. (2002). Effects of magnetic clouds on the occurrence of geomagnetic storms: The first 4 years of Wind. J. Geophys. Res., 107(A10), 1314.

Xie, H., Gopalswamy, N., Manoharan, P. K., Lara, A., Yashiro, S., and Lepri, S. (2006). Long-lived geomagnetic storms and coronal mass ejections. J. Geophys. Res., 111(A1), A01103.

Yermolaev, Y. I., Yermolaev, M. Y., Lodkina, I. G., and Nikolaeva, N. S. (2007). Statistical investigation of heliospheric con-ditions resulting in magnetic storms. Cosmic Res., 45(1), 1–8.

Yermolaev, Y. I., Lodkina, I. G., Nikolaeva, N. S., and Yermolaev, M. Y. (2010a). Statistical study of interplanetary condition effect on geomagnetic storms. Cosmic Res., 48(6), 485–500.

Yermolaev, Y. I., Nikolaeva, N. S., Lodkina, I. G., and Yermolaev, M. Y. (2010b). Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann Geophys., 28(12), 2177–2186.

Yue, C., Zong, Q. G., Zhang, H., Wang, Y. F., Yuan, C. J., Pu, Z. Y., Fu, S. Y., Lui, A. T. Y., Yang, B., and Wang, C. R. (2010). Geomagnetic activity triggered by interplanetary shocks. J. Geophys. Res., 115(A5), A00I05.

Yue, C., and Zong, Q. G. (2011). Solar wind parameters and geomagnetic indices for four different interplanetary shock/ICME structures. J. Geophys. Res., 116(A12), A12201.

Zhang, J., Dere, K. P., Howard, R. A., and Bothmer, V. (2003). Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J., 582(1), 520–533.

Zhang, J. C., Liemohn, M. W., Kozyra, J. U., Thomsen, M. F., Elliott, H. A., and Weygand, J. M. (2006). A statistical com-parison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum. J. Geophys. Res., 111(A1), A01104.

Zhao, H., Zong, Q. G., Wei, Y., and Wang, Y. F. (2011). Influence of solar wind dynamic pressure on geomagnetic Dst index during various magnetic storms. Sci. China Technol. Sci., 54(6), 1445–1454.

Zhou, X. Y., and Tsurutani, B. T. (2001). Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseu-dobreakups, and quiescent events. J. Geophys. Res., 106(A9), 18957–18967.


XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005


JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002


XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041


QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020


Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062


Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012


YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043


Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, and Qi Zhu, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020060


Shucan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong XU, Safi Ullah, Abdur Rauf and Abdel Hannachid, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020061


Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034


Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang, 2020: A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements, Earth and Planetary Physics, 4, 266-273. doi: 10.26464/epp2020031


Quan-Zhi Ye, 2018: A preliminary analysis of the Shangri-La Bolide on 2017 Oct 4, Earth and Planetary Physics, , 170-172. doi: 10.26464/epp2018017


Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046


Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048


Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004


Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040


JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics. doi: 10.26464/epp2020043


RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao