Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wei, Z. and Zhao, L. (2019). Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region. Earth Planet. Phys., 3(6), 526–536.doi: 10.26464/epp2019054

2019, 3(6): 526-536. doi: 10.26464/epp2019054

SOLID EARTH: SEISMOLOGY

Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region

School of Earth and Space Sciences, Peking University, Beijing 100871, China

Corresponding author: Li Zhao, lizhaopku@pku.edu.cn

Received Date: 2019-09-01
Web Publishing Date: 2019-11-01

Low-rise buildings are susceptible to high-frequency ground motion. The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than those of body waves. In this study, we develop a Lg-wave Q model for the Sichuan and Yunnan region in the frequency band of 0.3–2.0 Hz using regional seismic records of 1166 earthquakes recorded at 152 stations. Comparison between the observed pattern of ground motion from real earthquake and model prediction demonstrates the robustness and effectiveness of our Lg-Q model. Then, assuming that the Lg-wave Q structure is the main factor affecting the propagation of the high-frequency ground motions, we calculate the spatial distributions of high-frequency ground motions from scenario earthquakes at different locations in the region using the average Lg-wave attenuation model over the frequency band of 0.3–2.0 Hz. We also use the Lg-Q model to estimate the distribution of cumulative energy of high-frequency ground motions based on the historical seismicity of the Sichuan and Yunnan region. Results show that the Lg-Q model can be used effectively in estimating the spatial distribution of high-frequency seismic energies and thus can contribute to the assessment of seismic hazard to low-rise buildings.

Key words: Lg-wave attenuation model, high-frequency ground motions, seismic hazards, low-rise buildings

Bai, D. H., Unsworth, M. J., Meju, M. A., Ma, X. B., Teng, J. W., Kong, X. R., Sun, Y., Sun, J., Wang, L. F., … Liu, M. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci., 3(5), 358–362. https://doi.org/10.1038/ngeo830

Bjerrum, L. W., Sørensen, M. B., and Atakan, K. (2010). Strong ground-motion simulation of the 12 May 2008 Mw 7.9 Wenchuan earthquake, using various slip models. Bull. Seismol. Soc. Am., 100(5B), 2396–2424. https://doi.org/10.1785/0120090239

Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull. Seismol. Soc. Am., 73(6A), 1865–1894.

Chen, X. F. (1999). Seismogram synthesis in multi-layered half-space Part I. Theoretical formulations. Earthq. Res. China, 13(2), 149–174.

Cui, J. W., Li, S. C., Gao, D., Zhao, Y. Q., and Bao, Y. F. (2006). Ground motion attenuation relation in the Yunnan Area. J. Seismol. Res. (in Chinese) , 29(4), 386–391. https://doi.org/10.3969/j.issn.1000-0666.2006.04.012

Dan, K., Watanabe, T., Tanaka, T., and Sato, R. (1990). Stability of earthquake ground motion synthesized by using different small-event records as empirical Green's functions. Bull. Seismol. Soc. Am., 80(6A), 1433–1455.

Han, W. B., and Jiang, G. F. (2004). Study on distribution characteristics of strong earthquakes in Sichuan-Yunnan area and their geological tectonic background. Acta Seismol. Sin. (in Chinese) , 26(2), 211–222. https://doi.org/10.3321/j.issn:0253-3782.2004.02.011

Hartzell, S. H. (1978). Earthquake aftershocks as Green's functions. Geophys. Res. Lett., 5(1), 1–4. https://doi.org/10.1029/GL005i001p00001

Irikura, K. (1983). Semi-empirical estimation of strong ground motions during large earthquake. Bull. Dis. Prev. Res. Inst., 33(2), 63–104.

Joyner, W. B., and Boore, D. M. (1986). On simulating large earthquakes by Green’s-function addition of smaller earthquakes. In S. Das, et al. (Eds.), Earthquake Source Mechanics (pp. 269-274). Washington: AGU. https://doi.org/10.1029/GM037p0269222

Kanamori, H. (1979). A semi-empirical approach to prediction of long-period ground motions from great earthquakes. Bull. Seismol. Soc. Am., 69(6), 1645–1670.

Kasahara, K. (1981). Earthquake Mechanics. New York: Cambridge University Press.222

Kennett, B. L. N. (1986). Lg waves and structural boundaries. Bull. Seismol. Soc. Am., 76(4), 1133–1141.

Kennett, B. L. N. (2001). Representations of seismicity. Geochem. Geophys. Geosys., 2(8), 2000GC000140. https://doi.org/10.1029/2000GC000140

Kennett, B. L. N., and Wei, Z. (2017). High-frequency ground motion from Australian earthquakes. Aust. J. Earth Sci., 64(6), 769–777. https://doi.org/10.1080/08120099.2017.1364294

Liu, Q. Y., van Der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., Qi, S. H., Wang, J., Huang, H., and Li, S. C. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci., 7(5), 361–365. https://doi.org/10.1038/ngeo2130

Mao, Y., and Hu, J. H. (2012). Prediction of ground motion of the 2007 Ning'er, Yunnan, Ms6.4 earthquake. Acta Seismol. Sin., 34(3), 339–349. https://doi.org/10.3969/j.issn.0253-3782.2012.03.006

Meng, L. Y., Zhou L. Q., and Liu, J. (2014). Estimation of the near-fault strong ground motion and intensity distribution of the 2013 Lushan, Sichuan, Ms7.0 earthquake. Chinese J. Geophys. (in Chinese) , 57(2), 441–448. https://doi.org/10.6038/cjg20140210

Pasyanos, M. E., Matzel, E. M., Walter, W. R., and Rodgers, A. J. (2009). Broad-band Lg attenuation modelling in the Middle East. Geophys. J. Int., 177(3), 1166–1176. https://doi.org/10.1111/j.1365-246X.2009.04128.x

Ren, Y. F., Wen, R. Z., Zhou, B. F., and Huang, X. T. (2014). The characteristics of strong ground motion of Lushan Earthquake on April 20, 2013. Chinese J. Geophys. (in Chinese) , 57(6), 1836–1846. https://doi.org/10.6038/cjg20140615

Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z. L., Shen, F., and Liu, Y. P. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790. https://doi.org/10.1126/science.276.5313.788

Sheehan, A. F., de la Torre, T. L., Monsalve, G., Abers, G. A., and Hacker, B. R. (2014). Physical state of Himalayan crust and uppermost mantle: constraints from seismic attenuation and velocity tomography. J. Geophys. Res.: Solid Earth, 119(1), 567–580. https://doi.org/10.1002/2013JB010601

Su, Y. J., and Qin, J. Z. (2001). Strong earthquake activity and relation to regional neotectonic movement in Sichuan-Yunnan Region. Earthq. Res. China (in Chinese) , 17(1), 24–34. https://doi.org/10.3969/j.issn.1001-4683.2001.01.004

Takemura, M., and Ikeura, T. (1988). A semi-empirical method using a hybrid of stochastic and deterministic fault models: simulation of strong ground motions during large earthquakes. J. Phys. Earth, 36(3), 89–106. https://doi.org/10.4294/jpe1952.36.89

Wei, W., Sun, R. M., and Shi, Y. L. (2010). P-wave tomographic images beneath southeastern Tibet: Investigating the mechanism of the 2008 Wenchuan earthquake. Sci. China: Earth Sci., 53(9), 1252–1259. https://doi.org/10.1007/s11430-010-4037-5

Wei, Z., Kennett, B. L. N., and Zhao, L. F. (2017). Lg-wave attenuation in the Australian crust. Tectonophysics, 717, 413–424. https://doi.org/10.1016/j.tecto.2017.08.022

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos Trans. AGU, 94(45), 409–410. https://doi.org/10.1002/2013EO450001

Xu, X. W., Wen, X. Z., Zheng, R. Z., Ma, W. T., Song, F. M., and Yu, G. H. (2003). Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D: Earth Sci., 46(S2), 210–226. https://doi.org/10.1360/03dz0017

Yao, X. D., Zhang, W. B., and Yu, X. W. (2015). Simulation of near-field strong ground motion caused by the 2008 Ms8.0 Wenchuan earthquake. Chinese J. Geophys. (in Chinese) , 58(3), 886–903. https://doi.org/10.6038/cjg20150317

Yi, G. X., Wen, X. Z., and Su, Y. J. (2008). Study on the potential strong–earthquake risk for the eastern boundary of the Sichuan–Yunnan active faulted–block, China. Chinese J. Geophys., 51(6), 1151–1158. https://doi.org/10.1002/cjg2.1311

Zhang, Z. G., Sun, Y. C., Xu, J. K., Zhang, W., and Chen, X. F. (2014). Preliminary simulation of strong ground motion for Ludian, Yunnan earthquake of 3 August 2014, and hazard implication. Chinese J. Geophys. (in Chinese) , 57(9), 3038–3041. https://doi.org/10.6038/cjg20140928

Zhao, L. F., Xie, X. B., Wang, W. M., Zhang, J. H., and Yao, Z. X. (2010). Seismic Lg-wave Q tomography in and around Northeast China. J. Geophys. Res.: Solid Earth, 115(B8), B08307. https://doi.org/10.1029/2009JB007157

Zhao, L. F., Xie, X. B., Wang, W. M., Zhang, J. H., and Yao, Z. X. (2013). Crustal Lg attenuation within the North China Craton and its surrounding regions. Geophys. J. Int., 195(1), 513–531. https://doi.org/10.1093/gji/ggt235

Zhao, L. F., and Xie, X. B. (2016). Strong Lg-wave attenuation in the Middle East continental collision orogenic belt. Tectonophysics, 674, 135–146. https://doi.org/10.1016/j.tecto.2016.02.025

Zhao, L. F., and Mousavi, S. M. (2018). Lateral variation of crustal Lg attenuation in eastern North America. Sci. Rep., 8(1), 7285. https://doi.org/10.1038/s41598-018-25649-5

Zhou, L. Q., Zhao, C. P., Xiu, J. G., and Chen, Z. L. (2008). Tomography of QLg in Sichuan–Yunnan Zone. Chinese J. Geophys., 51(6), 1159–1167. https://doi.org/10.1002/cjg2.1312

[1]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[2]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[3]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[4]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[5]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[6]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[7]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[8]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[9]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[10]

YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056

[11]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[12]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[13]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[14]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[15]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[16]

Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011

[17]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[18]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[19]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[20]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region

Zhi Wei, Li Zhao