Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Xiao, S. D., Wu, M. Y., Wang, G. Q., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020). Turbulence in the near-Venusian space: Venus Express observations. Earth Planet. Phys., 4(1), 82–87.doi: 10.26464/epp2020012

2020, 4(1): 82-87. doi: 10.26464/epp2020012

PLANETARY SCIENCES

Turbulence in the near-Venusian space: Venus Express observations

1. 

Harbin Institute of Technology, Shenzhen 518055, China

2. 

Space Science Institute, Macau University of Science and Technology, Macau 999078, China

3. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei 230026, China

4. 

Space Research Institute, Austrian Academy of Sciences, Graz 8042, Austria

Corresponding author: TieLong Zhang, tielong.zhang@oeaw.ac.at

Received Date: 2020-01-05
Web Publishing Date: 2020-01-01

With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling features is presented in MHD and kinetic regimes. It can be observed that turbulence is a common phenomenon in the solar wind in both regimes. The solar wind MHD turbulence is modified at the Venusian bow shock; MHD turbulence is absent in the Venusian magnetosheath but present at the magnetosheath boundary layer. Pre-existing kinetic turbulence from the far upstream solar wind is modified in the near solar wind region, while kinetic turbulence can be extensively observed throughout the Venusian magnetosheath and in some regions of the induced magnetosphere. Our results reveal that, in the near-Venusian space, energy cascade can be developed at the boundary between magnetosheath and wake, and the turbulence-related dissipation of magnetic energy occurs extensively in the magnetosheath and the induced magnetosphere.

Key words: turbulence, near-Venusian space, kinetic effects, Venus Express

Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., and Vaisberg, O. L. (2011). The induced magnetospheres of Mars, Venus, and Titan. Space Sci. Rev., 162(1-4), 113–171. https://doi.org/10.1007/s11214-011-9845-1

Bruno, R., and Carbone, V. (2005). The solar wind as a turbulence laboratory. Living Rev. Solar Phys., 2, 4. https://doi.org/10.12942/lrsp-2005-4

Du, J., Zhang, T. L., Baumjohann, W., Wang, C., Volwerk, M., Vörös, Z., and Guicking, L. (2010). Statistical study of low-frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations. J. Geophys. Res. Space Phys., 115(A12), A12251. https://doi.org/10.1029/2010JA015549

Dwivedi, N. K., Schmid, D., Narita, Y., Kovács, P., Vörös, Z., Delva, M., and Zhang, T. L. (2015). Statistical investigation on the power-law behavior of magnetic fluctuations in the Venusian magnetosheath. Earth, Planets and Space, 67(1), 137. https://doi.org/10.1186/s40623-015-0308-x

Gringauz, K. I. (1981). A comparison of the magnetospheres of Mars, Venus and the Earth. Adv. Space Res., 1(1), 5–24. https://doi.org/10.1016/0273-1177(81)90084-3

Guicking, L., Glassmeier, K. H., Auster, H. U., Delva, M., Motschmann, U., Narita, Y., and Zhang, T. L. (2010). Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations. Annales Geophysicae, 28, 951–967. https://doi.org/10.5194/angeo-28-951-2010

Lembège, B., and Savoini, P. (2002). Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res. Space Phys., 107(A3), SMP X-1–SMP X-18. https://doi.org/10.1029/2001JA900128

Luhmann, J. G., Tatrallyay, M., Russell, C. T., and Winterhalter, D. (1983). Magnetic field fluctuations in the Venus magnetosheath. Geophys. Res. Lett., 10(8), 655–658. https://doi.org/10.1029/GL010i008p00655

Luhmann, J. G. (1986). The solar wind interaction with Venus. Space Sci. Rev., 44(3-4), 241–306. https://doi.org/10.1007/BF00200818

Möstl, U. V., Erkaev, N. V., Zellinger, M., Lammer, H., Gröller, H., Biernat, H. K., and Korovinskiy, D. (2011). The Kelvin-Helmholtz instability at Venus: what is the unstable boundary?. Icarus, 216(2), 476–484. https://doi.org/10.1016/j.icarus.2011.09.012

Phillips, J. L., and McComas, D. J. (1991). The magnetosheath and magnetotail of Venus. Space Sci. Rev., 55(1-4), 1–80. https://doi.org/10.1007/BF00177135

Ruhunusiri, S., Halekas, J. S., Espley, J. R., Mazelle, C., Brain, D., Harada, Y., DiBraccio, G. A., Livi, R., Larson, D. E.,.. Howes, G. G. (2017). Characterization of turbulence in the Mars plasma environment with MAVEN observations. J. Geophys. Res. Space Phys., 122(1), 656–674. https://doi.org/10.1002/2016JA023456

Shan, L. C., Lu, Q. M., Mazelle, C., Huang, C., Zhang, T. L., Wu, M. Y., Gao, X. L., and Wang, S. (2015). The shape of the Venusian bow shock at solar minimum and maximum: Revisit based on VEX observations. Planet. Space Sci., 109-110, 32–37. https://doi.org/10.1016/j.pss.2015.01.004

Svedhem, H., Titov, D. V., McCoy, D., Lebreton, J. P., Barabash, S., Bertaux, J. L., Drossart, P., Formisano, V., Häusler, B.,.. Coradini, M. (2007). Venus Express-the first European mission to Venus. Planet. Space Sci., 55(12), 1636–1652. https://doi.org/10.1016/j.pss.2007.01.013

Titov, D. V., Svedhem, H., Koschny, D., Hoofs, R., Barabash, S., Bertaux, J. L., Drossart, P., Formisano, V., Häusler, B.,.. Clochet, A. (2006). Venus Express science planning. Planet. Space Sci., 54(13-14), 1279–1297. https://doi.org/10.1016/j.pss.2006.04.017

Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

Vörös, Z., Baumjohann, W., Nakamura, R., Volwerk, M., Runov, A., Zhang, T. L., Eichelberger, H. U., Treumann, R., Georgescu, E., … Réme, H. (2004). Magnetic turbulence in the plasma sheet. J. Geophys. Res. Space Phys., 109(A11), A11215. https://doi.org/10.1029/2004JA010404

Vörös, Z., Zhang, T. L., Leubner, M. P., Volwerk, M., Delva, M., Baumjohann, W., and Kudela, K. (2008a). Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophys. Res. Lett., 35(11), L11102. https://doi.org/10.1029/2008GL033879

Vörös, Z., Zhang, T. L., Leaner, M. P., Volwerk, M., Delva, M., and Baumjohann, W. (2008b). Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake. J. Geophys. Res. Planets, 113(E12), E00B21. https://doi.org/10.1029/2008JE003159

Xiao, S. D., Zhang, T. L., and Wang, G. Q. (2017). Statistical study of low-frequency magnetic field fluctuations near Venus during the solar cycle. J. Geophys. Res. Space Phys., 122(8), 8409–8418. https://doi.org/10.1002/2017JA023878

Xiao, S. D., Zhang, T. L., and Vörös, Z. (2018). Magnetic fluctuations and turbulence in the Venusian magnetosheath downstream of different types of bow shock. J. Geophys. Res. Space Phys., 123(10), 8219–8226. https://doi.org/10.1029/2018JA025250

Zhang, T. L., Baumjohann, W., Delva, M., Auster, H. U., Balogh, A., Russell, C. T., Barabash, S., Balikhin, M., Berghofer, G., … Lebreton, J. P. (2006). Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express. Planet. Space Sci., 54(13-14), 1336–1343. https://doi.org/10.1016/j.pss.2006.04.018

Zhang, T. L., Delva, M., Baumjohann, W., Auster, H. U., Carr, C., Russell, C. T., Barabash, S., Balikhin, M., Kudela, K., … Lebreton, J. P. (2007). Little or no solar wind enters Venus’ atmosphere at solar minimum. Nature, 450(7170), 654–656. https://doi.org/10.1038/nature06026

Zhang, T. L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C. T., Wei, H. Y., Wang, C., Balikhin, M., Barabash, S., … Kudela, K. (2008). Induced magnetosphere and its outer boundary at Venus. J. Geophys. Res. Planets, 113(E9), E00B20. https://doi.org/10.1029/2008JE003215

[1]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[2]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[3]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050

[4]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[5]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[6]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[7]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[8]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Turbulence in the near-Venusian space: Venus Express observations

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang