Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhou, X., Yue, X. A., Liu, H.-L., Wei, Y. and Pan, Y. X. (2021). Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations. Earth Planet. Phys., 5(4), 327–336. http://doi.org/10.26464/epp2021040

2021, 5(4): 327-336. doi: 10.26464/epp2021040

SPACE PHYSICS: IONOSPHERIC PHYSICS

Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

5. 

High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA

Corresponding author: XinAn Yue, yuexinan@mail.iggcas.ac.cn

Received Date: 2021-04-27
Web Publishing Date: 2021-07-08

Responses of atmospheric carbon dioxide (CO2) density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended (WACCM-X). Our ensemble simulations show that CO2 volume mixing ratios (VMRs) increase at high latitudes and decrease at mid and low latitudes by several ppmv in response to a 50% weakening of the geomagnetic field. Statistically significant changes in CO2 are mainly found above ~90 km altitude and primarily redetermine the energy budget at ~100–110 km. Our analysis of transformed Eulerian mean (TEM) circulation found that CO2 change is caused by enhanced upwelling at high latitudes and downwelling at mid and low latitudes as a result of increased Joule heating. We further analyzed the atmospheric CO2 response to realistic geomagnetic weakening between 1978 and 2013, and found increasing (decreasing) CO2 VMRs at high latitudes (mid and low latitudes) accordingly. For the first time, our simulation results demonstrate that the impact of geomagnetic variation on atmospheric CO2 distribution is noticeable on a time scale of decades.

Key words: atmospheric carbon dioxide, geomagnetic fields, whole atmosphere simulation, upper atmosphere

Akmaev, R. A., and Fomichev, V. I. (2000). A model estimate of cooling in the mesosphere and lower thermosphere due to the CO2 increase over the last 3-4 decades. Geophys. Res. Lett., 27(14), 2113–2116. https://doi.org/10.1029/1999GL011333

Akmaev, R. A., Fomichev, V. I., and Zhu, X. (2006). Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. J. Atmos. Solar Terr. Phys., 68(17), 1879–1889. https://doi.org/10.1016/j.jastp.2006.03.008

Andrews, D. G., and Mcintyre, M. E. (1976). Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33(11), 2031–2048. https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 128). San Diego: Academic Press.222

Arnold, N. F., and Robinson, T. R. (2001). Solar magnetic flux influences on the dynamics of the winter middle atmosphere. Geophys. Res. Lett., 28(12), 2381–2384. https://doi.org/10.1029/2000GL012825

Cnossen, I., Richmond, A. D., Wiltberger, M., Wang, W. B., and Schmitt, P. (2011). The response of the coupled magnetosphere-ionosphere-thermosphere system to a 25% reduction in the dipole moment of the Earth's magnetic field. J. Geophys. Res., 116(A12), A12304. https://doi.org/10.1029/2011JA017063

Cnossen, I., Richmond, A. D., and Wiltberger, M. (2012). The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth's magnetic dipole moment. J. Geophys. Res., 117(A5), A05302. https://doi.org/10.1029/2012JA017555

Cnossen, I., and Richmond, A. D. (2012). How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system. J. Geophys. Res., 117(A10), A10317. https://doi.org/10.1029/2012JA018056

Cnossen, I. (2014). The importance of geomagnetic field changes versus rising CO2 levels for long-term change in the upper atmosphere. J. Space Wea. Space Climate, 4, A18. https://doi.org/10.1051/swsc/2014016

Cnossen, I., Liu, H. L., and Lu, H. (2016). The whole atmosphere response to changes in the Earth's magnetic field from 1900 to 2000: an example of “top-down” vertical coupling. J. Geophys. Res., 121(13), 7781–7800. https://doi.org/10.1002/2016JD024890

Cnossen, I. (2020). Analysis and attribution of climate change in the upper atmosphere from 1950 to 2015 simulated by WACCM-X. J. Geophys. Res., 125(12), e2020JA028623. https://doi.org/10.1029/2020JA028623

Constable, C., Korte, M., and Panovska, S. (2016). Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett., 453, 78–86. https://doi.org/10.1016/j.jpgl.2016.08.015

De Santis, A., Qamili, E., Spada, G., and Gasperini, P. (2012). Geomagnetic South Atlantic Anomaly and global sea level rise: a direct connection?. J. Atmos. Solar Terr. Phys., 74, 129–135. https://doi.org/10.1016/j.jastp.2011.10.015

Dickinson, R. E. (1984). Infrared radiative cooling in the mesosphere and lower thermosphere. J. Atmos. Terr. Phys., 46(11), 995–1008. https://doi.org/10.1016/0021-9169(84)90006-0

Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., and Sinclair, R. W. (1980). Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. J. Atmos. Sci., 37(10), 2265–2297. https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2

Fomichev, V. I., Blanchet, J. P., and Turner, D. S. (1998). Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J. Geophys. Res., 103(D10), 11505–11528. https://doi.org/10.1029/98JD00799

Fomichev, V. I., Jonsson, A. I., de Grandpré, J., Beagley, S. R., McLandress, C., Semeniuk, K., and Shepherd, T. G. (2007). Response of the middle atmosphere to CO2 doubling: results from the Canadian middle atmosphere model. J. Climate, 20(7), 1121–1144. https://doi.org/10.1175/JCLI4030.1

Gallet, Y., Genevey, A., and Fluteau, F. (2005). Does Earth's magnetic field secular variation control centennial climate change?. Earth Planet. Sci. Lett., 236(1-2), 339–347. https://doi.org/10.1016/j.jpgl.2005.04.045

Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F. (2007). Simulation of secular trends in the middle atmosphere, 1950-2003. J. Geophys. Res., 112(D9), D09301. https://doi.org/10.1029/2006JD007485

Gubbins, D., Jones, A. L., and Finlay, C. C. (2006). Fall in Earth's magnetic field is erratic. Science, 312(5775), 900–902. https://doi.org/10.1126/science.1124855

Guyodo, Y., and Valet, J. P. (1999). Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature, 399(6733), 249–252. https://doi.org/10.1038/20420

Heelis, R. A., Lowell, J. K., and Spiro, R. W. (1982). A model of the high-latitude ionospheric convection pattern. J. Geophys. Res., 87(A8), 6339–6345. https://doi.org/10.1029/JA087iA08p06339

Jeevanjee, N., and Fueglistaler, S. (2020). On the cooling-to-space approximation. J. Atmos. Sci., 77(2), 465–478. https://doi.org/10.1175/JAS-D-18-0352.1

Kitaba, I., Hyodo, M., Katoh, S., Dettman, D. L., and Sato, H. (2013). Midlatitude cooling caused by geomagnetic field minimum during polarity reversal. Proc. Natl. Acad. Sci. USA, 110(4), 1215–1220. https://doi.org/10.1073/pnas.1213389110

Kitaba, I., Hyodo, M., Nakagawa, T., Katoh, S., Dettman, D. L., and Sato, H. (2017). Geological support for the umbrella effect as a link between geomagnetic field and climate. Sci. Rep., 7, 40682. https://doi.org/10.1038/srep40682

Kockarts, G. (1980). Nitric oxide cooling in the terrestrial thermosphere. Geophys. Res. Lett., 7(2), 137–140. https://doi.org/10.1029/GL007i002p00137

Korte, M., Constable, C., Donadini, F., and Holme, R. (2011). Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett., 312(3−4), 497–505. https://doi.org/10.1016/j.jpgl.2011.10.031

Li, J. Y., Wang, W. B., Lu, J. Y., Yuan, T., Yue, J., Liu, X., Zhang, K. D., Burns, A. G., Zhang, Y. L., and Li, Z. (2018). On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes. Geophys. Res. Lett., 45(19), 10128–10137. https://doi.org/10.1029/2018GL078968

Li, J. Y., Wang, W. B., Lu, J. Y., Yue, J., Burns, A. G., Yuan, T., Chen, X. T., and Dong, W. J. (2019). A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes. J. Geophys. Res., 124(5), 3666–3680. https://doi.org/10.1029/2019JA026533

Liu, H. L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Marsh, D. R., Maute, A., Mcinerney, J. M., .. Wang, W. B. (2018). Development and validation of the whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X 2.0). J. Adv. Model. Earth Syst., 10(2), 381–402. https://doi.org/10.1002/2017MS001232

Liu, H. X., Tao, C., Jin, H., and Nakamoto, Y. (2020). Circulation and tides in a cooler upper atmosphere: dynamical effects of CO2 doubling. Geophys. Res. Lett., 47(10), e2020GL087413. https://doi.org/10.1029/2020GL087413

Liu, H. X., Tao, C., Jin, H., and Abe, T. (2021). Geomagnetic activity effects on CO2-driven trend in the thermosphere and ionosphere: ideal model experiments with GAIA. J. Geophys. Res., 126(1), e2020JA028607. https://doi.org/10.1029/2020JA028607

Lu, G., Mlynczak, M. G., Hunt, L. A., Woods, T. N., and Roble, R. G. (2010). On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J. Geophys. Res., 115(A5), A05306. https://doi.org/10.1029/2009JA014662

Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26(19), 7372–7391. https://doi.org/10.1175/JCLI-D-12-00558.1

Mlynczak, M., Martin-Torres, F. J., Russell, J., Beaumont, K., Jacobson, S., Kozyra, J., Lopez-Puertas, M., Funke, B., Mertens, C., .. Paxton, L. (2003). The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett., 30(21), 2100. https://doi.org/10.1029/2003GL017693

Mlynczak, M. G., Knipp, D. J., Hunt, L. A., Gaebler, J., Matsuo, T., Kilcommons, L. M., and Young, C. L. (2018). Space-based sentinels for measurement of infrared cooling in the thermosphere for space weather nowcasting and forecasting. Space Wea., 16(4), 363–375. https://doi.org/10.1002/2017SW001757

Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M. H. (2013). The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26(14), 5150–5168. https://doi.org/10.1175/JCLI-D-12-00236.1

Qian, L. Y., Roble, R. G., Solomon, S. C., and Kane, T. J. (2006). Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophys. Res. Lett., 33(23), L23705. https://doi.org/10.1029/2006GL027185

Qian, L. Y., Laštovička, J., Roble, R. G., and Solomon, S. C. (2011). Progress in observations and simulations of global change in the upper atmosphere. J. Geophys. Res., 116(A2), A00H03. https://doi.org/10.1029/2010JA016317

Qian, L. Y., Burns, A. G., Solomon, S. C., and Wang, W. B. (2017). Carbon dioxide trends in the mesosphere and lower thermosphere. J. Geophys. Res., 122(4), 4474–4488. https://doi.org/10.1002/2016JA023825

Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., and Russell Ⅲ, J. M. (2007). Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992-2005. J. Geophys. Res., 112(D8), D08308. https://doi.org/10.1029/2006JD007696

Rezac, L., Jian, Y., Yue, J., Russell Ⅲ, J. M., Kutepov, A., Garcia, R., Walker, K., and Bernath, P. (2015). Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER. J. Geophys. Res., 120(23), 12067–12081. https://doi.org/10.1002/2015JD023955

Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex coordinates. J. Geomag. Geoelectr., 47(2), 191–212. https://doi.org/10.5636/jgg.47.191

Roble, R. G., and Ridley, E. C. (1987). An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys. A, 5(6), 369–382.

Roble, R. and Dickinson, R. (1989). How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?. Geophysical Research Letters, 16, 1441-1444. https://doi.org/10.1029/GL016i012p01441222

Seppälä, A., Lu, H., Clilverd, M. A., and Rodger, C. J. (2013). Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response. J. Geophys. Res. Atmos., 118, 2169–2183. https://doi.org/10.1002/jgrd.50236

Smith, A. K., Garcia, R. R., Marsh, D. R., and Richter, J. H. (2011). WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res., 116(D20), D20115. https://doi.org/10.1029/2011JD016083

Solomon, S. C., Qian, L. Y., and Roble, R. G. (2015). New 3-D simulations of climate change in the thermosphere. J. Geophys. Res., 120(3), 2183–2193. https://doi.org/10.1002/2014ja020886

Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L. Y., and Vitt, F. M. (2018). Whole atmosphere simulation of anthropogenic climate change. Geophys. Res. Lett., 45(3), 1567–1576. https://doi.org/10.1002/2017GL076950

Svensmark, H., Enghoff, M. B., Shaviv, N. J., and Svensmark, J. (2017). Increased ionization supports growth of aerosols into cloud condensation nuclei. Nat. Commun., 8(1), 2199. https://doi.org/10.1038/s41467-017-02082-2

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., … Zvereva, T. (2015). International geomagnetic reference field: the 12th generation. Earth Planets Space, 67(1), 79. https://doi.org/10.1186/s40623-015-0228-9

Valet, J. P., and Meynadier, L. (1993). Geomagnetic field intensity and reversals during the past four million years. Nature, 366(6452), 234–238. https://doi.org/10.1038/366234a0

Wollin, G., Ericson, D. B., Ryan, W. B. F., and Foster, J. H. (1971). Magnetism of the earth and climatic changes. Earth Planet. Sci. Lett., 12(2), 175–183. https://doi.org/10.1016/0012-821X(71)90075-6

Yue, X. N., Hu, L. H., Wei, Y., Wan, W. X., and Ning, B. Q. (2018). Ionospheric trend over Wuhan during 1947-2017: comparison between simulation and observation. J. Geophys. Res., 123(2), 1396–1409. https://doi.org/10.1002/2017JA024675

Zossi, B. S., Elias, A. G., and Fagre, M. (2018). Ionospheric conductance spatial distribution during geomagnetic field reversals. J. Geophys. Res., 123(3), 2379–2397. https://doi.org/10.1002/2017JA024925

[1]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[2]

Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

[3]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[4]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[5]

TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010

[6]

Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047

[7]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[8]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[9]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[10]

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039

[11]

Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok, 2021: Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms, Earth and Planetary Physics, 5, 180-186. doi: 10.26464/epp2021015

[12]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[13]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[14]

DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038

[15]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[16]

BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang, 2021: Formation of the bow shock indentation: MHD simulation results, Earth and Planetary Physics, 5, 259-269. doi: 10.26464/epp2021033

[17]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[18]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[19]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[20]

ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics, 4, 472-478. doi: 10.26464/epp2020046

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations

Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan