Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

2018, 2(6): 505-514. doi: 10.26464/epp2018049


Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1

China Research Institute of Radiowave Propagation, Qingdao 266107, China

Corresponding author: Liang Chen,

Received Date: 2018-08-24
Web Publishing Date: 2018-11-01

This paper reports, for the first time, observation results of the Coherent Beacon System (CBS) onboard the China Seismo-Electromagnetic Satellite-1 (CSES-1). We describe the CBS, and the Computerized Ionospheric Tomography (CIT) algorithm program is validated by numerical experiment. Two examples are shown, for daytime and nighttime respectively. The Equatorial Ionization Anomaly (EIA) can be seen, and the northern crest core is located at ~20°N in the reconstruction image at 07:28 UTC on 20 July 2018 (daytime). Disturbances are shown in the reconstruction image at 18:40 UTC on 13 July 2018 (nighttime). We find that beacon measurements are more consistent with ionosonde measurements than model results, by comparing NmF2 at three sites at Lanzhou, Chongqing, and Kunming; consistency with ionosonde measurements validates beacon measurements. Finally, we have studied Vertical Total Electron Content (VTEC) variations from ground to ~500 km (the height of CSES-1 orbit) and ratios of VTEC between beacon measurements and CODE (Center for Orbit Determination in Europe) data. VTEC variation from ground to ~500 km has a range of 7.2–16.5 TECU for the daytime case and a range of 1.1–1.7 TECU for the nighttime case. The Beacon/CODE ratio of VTEC varies with latitude and time. The mean Beacon/CODE ratio is 0.69 for the daytime case and 0.26 for the nighttime case. The fact that the nighttime case yields lower ratios indicates the higher altitude of the ionosphere during nighttime when the ionosphere is assumed to be a thin layer.

Key words: Coherent Beacon System (CBS), China Seismo-Electromagnetic Satellite-1 (CSES-1), Computerized Ionospheric Tomography (CIT), Total Electron Content (TEC)

Austen, J. R., Franke, S. J., and Liu, C. H. (1988). Ionospheric imaging using computerized tomography. Radio Sci., 23(3), 299–307.

Bernhardt. P. A., Selcher, C. A., Basu, S., Bust, G., and Reising, S. (2000). Atmospheric studies with the tri-band beacon instrument on the COSMIC constellation. Terr.,Atmos. Oceanic Sci., 11(1), 291–312.

Bernhardt, P. A., and Siefring, C. L. (2006). New satellite-based systems for ionospheric tomography and scintillation region imaging. Radio Sci., 41(5), RS5S23.

Buonsanto, M. J. (1999). Ionospheric storms- a review. Space Sci. Rev., 88(3-4), 563–601.

Chuo, Y. J., Liu, J. Y., Pulinets, S. A., and Chen, Y. I. (2002). The ionospheric perturbations prior to the Chi-Chi and Chia-Yi earthquakes. J. Geodyn., 33(4-5), 509–517.

Dabas, R. S., Das, R. M., Sharma, K., and Pillai, K. G. M. (2007). Ionospheric pre-cursors observed over low latitudes during some of the recent major earthquakes. J. Atmos. Sol. Terr. Phys., 69(15), 1813–1824.

Davies, K., and Baker, D. M. (1965). Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res., 70(9), 2251–2253.

Hsiao, T. Y., Tsai, L. C., and Liu, C. H. (2009). The initial results from the LITN of the FORMOSAT-3 TBB Program. Terr. Atmos. Ocean. Sci., 20(1), 261–271.

Kunitsyn, V. E., Andreeva, E. S., Razinkov, O. G., and Tereshchenko, E. D. (1994). Phase and phase-difference ionospheric radio tomography. Int. J. Imag. Syst. Technol., 5(2), 128–140.

Kunitsyn, V. E., and Tereshchenko, E. D. (2003). Ionospheric Tomography. Berlin, Heidelberg: Springer.

Leitinger, R., Schmidt, G., and Tauriainen, A. (1975). An evaluation method combining the differential Doppler measurements from two stations that enables the calculation of the electron content of the ionosphere. J. Geophys., 41(2), 201–213

Leitinger, R. (1994). Data from orbiting navigation satellites for tomographic reconstruction. Int. J. Imag. Syst. Technol., 5(2), 86–96.

Liperovskaya, E. V., Liperovsky, V. A., Silina, A. S., and Parrot, M. (2006). On spread-F in the ionosphere before earthquakes. J. Atmos. Sol. Terr. Phys., 68(2), 125–133.

Liu, J. Y., Chen, Y. I., Pulinets, S. A., Tsai, Y. B., and Chuo, Y. J. (2000). Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes. Geophys. Res. Lett., 27(19), 3113–3116.

Na, H. R. (1994). Computerized ionospheric tomography. Int. J. Imaging Syst. Technol., 5(2), 77–187

Ondoh, T., and M. Hayakawa (1999). Anomalous occurrence of sporadic-E layers before the Hyogoken-Nanbu earthquake, M7.2 of January 17, 1995. In Atmospheric and Ionospheric Electromagnetic Phenomena Associate with Earthquakes (pp. 62–639). Tokyo: TERRAPUB.222

Ou, M., Zhang, H. B., and Zhen, W. M. (2012). GPS-based Ionospheric Tomography with Constrained IRI as a Regularization. In Proceedings of the 10th International Symposium on Antennas, Propagation & EM Theory (pp. 656–659). Xian, China: IEEE.

Popov, K. V., Liperovsky, V. A., Meister, C. V., Biagi, P. F., Liperovskaya, E. V., and Silina, A. S. (2004). On ionospheric precursors of earthquakes in scales of 2-3 hours. Phys. Chem. Earth, 29(4-9), 529–535.

Pryse, S. E., and Kersley, L. (1992). A preliminary experimental test of ionospheric tomography. J. Atmos. Terr. Phys., 54(7-8), 1007–1012.

Pryse, S. E. (2003). Radio tomography: A new experimental technique. Surv. Geophys., 24(1), 1–38.

Shen, X. H., Zhang, X. M., Wang, L. W., Chen, H. R., Wu, Y., Yuan, S. G., Shen, J. F., Zhao, S. F., Qian, J. D., and Ding, J. H. (2011). The earthquake-related disturbances in ionosphere and project of the first China seismo-electromagnetic satellite. Earthq. Sci., 24(6), 639–650.

Zhao, B. Q., Wang, M., Yu, T., Wan, W. X., Lei, J. H., Liu, L. B., and Ning, B. Q. (2008). Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake?. J. Geophys. Res., 113(A11), A11304.


JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042


Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043


XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041


Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044


Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047


Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050


JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010


LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023


LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011


Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics. doi: 10.26464/epp2019025


Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026


Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen