Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics. doi: 10.26464/epp2019029

doi: 10.26464/epp2019029

PLANETARY SCIENCES

Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment

1. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

2. 

National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100101, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2019-03-25
Web Publishing Date: 2019-07-01

The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×105 cm–3 and 127 km for the former, and 4.28×104 cm–3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.

Key words: Mars, planetary ionospheres, radio occultation

Adams, D., Xu, S., Mitchell, D. L., Lillis, R. J., Fillingim, M., Andersson, L., Fowler, C., Connerney, J. E. P., Espley, J., and Mazelle, C. (2018). Using magnetic topology to probe the sources of Mars’ nightside ionosphere. Geophys. Res. Lett., 45(22), 12190–12197. https://doi.org/10.1029/2018GL080629

Bhardwaj, A., and Jain, S. K. (2009). Monte Carlo model of electron energy degradation in a CO2 atmosphere. J. Geophys. Res. Space Phys., 114(A11), A11309. https://doi.org/10.1029/2009JA014298

Bougher, S. W., Engel, S., Hinson, D. P., and Forbes, J. M. (2001). Mars Global Surveyor radio science electron density profiles: Neutral atmosphere implications. Geophys. Res. Lett., 28(16), 3091–3094. https://doi.org/10.1029/2001GL012884

Bougher, S. W., Engel, S., Hinson, D. P., and Murphy, J. R. (2004). MGS radio science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res. Planets, 109(E3), E03010. https://doi.org/10.1029/2003JE002154

Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J., … Jakosky, B. M. (2017). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res. Space Phys., 122(1), 1296–1313. https://doi.org/10.1002/2016JA023454

Chapman, S. (1931a). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc., 43(1), 26. https://doi.org/10.1088/0959-5309/43/1/305

Chapman, S. (1931b). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth Part Ⅱ. Grazing incidence. Proc. Phys. Soc., 43(5), 483–501. https://doi.org/10.1088/0959-5309/43/5/302

Chen, R. H., Cravens, T. E., and Nagy, A. F. (1978). The Martian ionosphere in light of the Viking observations. J. Geophys. Res., 83(A8), 3871–3876. https://doi.org/10.1029/JA083iA08p03871

Choi, Y. W., Kim, J., Min, K. W., Nagy, A. F., and Oyama, K. I. (1998). Effect of the magnetic field on the energetics of Mars ionosphere. Geophys. Res. Lett., 25(14), 2753–2756. https://doi.org/10.1029/98GL51839

Cui, J., Galand, M., Yelle, R. V., Wei, Y., and Zhang, S. J. (2015a). Day-to-night transport in the Martian ionosphere: Implications from total electron content measurements. J. Geophys. Res. Space Phys., 120(3), 2333–2346. https://doi.org/10.1002/2014JA020788

Cui, J., Galand, M., Zhang, S. J., Vigren, E., and Zou, H. (2015b). The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. J. Geophys. Res. Planets, 120(2), 278–286. https://doi.org/10.1002/2014JE004726

Duru, F., Gurnett, D. A., Morgan, D. D., Winningham, J. D., Frahm, R. A., and Nagy, A. F. (2011). Nightside ionosphere of Mars studied with local electron densities: A general overview and electron density depressions. J. Geophys. Res. Space Phys., 116(A10), A10316. https://doi.org/10.1029/2011JA016835

Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2

Ergun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., and Jakosky, B. M. (2015). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophys. Res. Lett., 42(21), 8846–8853. https://doi.org/10.1002/2015GL065280

Flynn, C. L., Vogt, M. F., Withers, P., Andersson, L., England, S., and Liu, G. P. (2017). MAVEN observations of the effects of crustal magnetic fields on electron density and temperature in the Martian dayside ionosphere. Geophys. Res. Lett., 44(21), 10812–10821. https://doi.org/10.1002/2017GL075367

Fowler, C. M., Andersson, L., Ergun, R. E., Morooka, M., Delory, G., Andrews, D. J., Lillis, R. J., McEnulty, T., Weber, T. D., … Jakosky, B. M. (2015). The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophys. Res. Lett., 42(21), 8854–8861. https://doi.org/10.1002/2015GL065267

Fox, J. L. (1997). Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution. Geophys. Res. Lett., 24(22), 2901–2904. https://doi.org/10.1029/97GL52842

Fox, J. L., and Yeager, K. E. (2006). Morphology of the near-terminator Martian ionosphere: A comparison of models and data. J. Geophys. Res. Space Phys., 111(A10), A10309. https://doi.org/10.1029/2006JA011697

Fox, J. L. (2009). Morphology of the dayside ionosphere of Mars: Implications for ion outflows. J. Geophys. Res. Planets, 114(E12), E12005. https://doi.org/10.1029/2009JE003432

Fox, J. L., and Yeager, K. E. (2009). MGS electron density profiles: Analysis of the peak magnitudes. Icarus, 200(2), 468–479. https://doi.org/10.1016/j.icarus.2008.12.002

Fox, J. L., and Weber, A. J. (2012). MGS electron density profiles: Analysis and modeling of peak altitudes. Icarus, 221(2), 1002–1019. https://doi.org/10.1016/j.icarus.2012.10.002

Girazian, Z., Mahaffy, P., Lillis, R. J., Benna, M., Elrod, M., Fowler, C. M., and Mitchell, D. L. (2017a). Ion densities in the nightside ionosphere of Mars: Effects of electron impact ionization. Geophys. Res. Lett., 44(22), 11248–11256. https://doi.org/10.1002/2017GL075431

Girazian, Z., Mahaffy, P. R., Lillis, R. J., Benna, M., Elrod, M., and Jakosky, B. M. (2017b). Nightside ionosphere of Mars: Composition, vertical structure, and variability. J. Geophys. Res. Space Phys., 122(4), 4712–4725. https://doi.org/10.1002/2016JA023508

Gurnett, D. A., Huff, R. L., Morgan, D. D., Persoon, A. M., Averkamp, T. F., Kirchner, D. L., Duru, F., Akalin, F., Kopf, A. J., … Picardi, G. (2008). An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft. Adv. Space Res., 41(9), 1335–1346. https://doi.org/10.1016/j.asr.2007.01.062

Hanson, W. B., and Mantas, G. P. (1988). Viking electron temperature measurements: Evidence for a magnetic field in the Martian ionosphere. J. Geophys. Res. Space Phys., 93(A7), 7538–7544. https://doi.org/10.1029/JA093iA07p07538

Hantsch, M. H., and Bauer, S. J. (1990). Solar control of the Mars ionosphere. Planet. Space Sci., 38(4), 539–542. https://doi.org/10.1016/0032-0633(90)90146-H

Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. Planets, 104(E11), 2699727012. https://doi.org/10.1029/1999JE001069

Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., … Jakosky, B. M. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett., 42(21), 9023–9030. https://doi.org/10.1002/2015GL065419

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271

Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and Rasool, S. I. (1972). The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus, 17(2), 484–516. https://doi.org/10.1016/0019-1035(72)90014-0

Kliore, A. J., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and Woiceshyn, P. M. (1973). S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: Extended mission coverage of polar and intermediate latitudes. J. Geophys. Res., 78(20), 4331–4351. https://doi.org/10.1029/JB078i020p04331

Kopf, A. J., Gurnett, D. A., Morgan, D. D., and Kirchner, D. L. (2008). Transient layers in the topside ionosphere of Mars. Geophys. Res. Lett., 35(17), L17102. https://doi.org/10.1029/2008GL034948

Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear, R. T., and Michael, Jr. W. H. (1979). Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking. J. Geophys. Res. Solid Earth, 84(B14), 8443–8456. https://doi.org/10.1029/JB084iB14p08443

Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329

Martinis, C. R., Wilson, J. K., and Mendillo, M. J. (2003). Modeling day-to-day ionospheric variability on Mars. J. Geophys. Res. Space Phys., 108(A10), 1383. https://doi.org/10.1029/2003JA009973

Matta, M., Galand, M., Moore, L., Mendillo, M., and Withers, P. (2014). Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 227, 78–88. https://doi.org/10.1016/j.icarus.2013.09.006

Matta, M., Mendillo, M., Withers, P., and Morgan, D. (2015). Interpreting Mars ionospheric anomalies over crustal magnetic field regions using a 2-D ionospheric model. J. Geophys. Res. Space Phys., 120(1), 766–777. https://doi.org/10.1002/2014JA020721

Mendillo, M., Smith, S., Wroten, J., Rishbeth, H., and Hinson, D. (2003). Simultaneous ionospheric variability on Earth and Mars. J. Geophys. Res., 108(A12), 1432. https://doi.org/10.1029/2003JA009961

Morgan, D. D., Gurnett, D. A., Kirchner, D. L., Fox, J. L., Nielsen, E., and Plaut, J. J. (2008). Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res., 113(A9), A09303. https://doi.org/10.1029/2008JA013313

Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010). Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. J. Geophys. Res., 115(E12), E12009. https://doi.org/10.1029/2010JE003663

Nielsen, E., Zou, H., Gurnett, D. A., Kirchner, D. L., Morgan, D. D., Huff, R., Orosei, R., Safaeinili, A., Plaut, J. J., and Picardi, G. (2006). Observations of vertical reflections from the topside Martian Ionosphere. Space Sci. Rev., 126(1-4), 373–388. https://doi.org/10.1007/s11214-006-9113-y

Pätzold, M., Tellmann, S., Häusler, B., Hinson, D., Schaa, R., and Tyler, G. L. (2005). A sporadic third layer in the ionosphere of Mars. Science, 310(5749), 837–839. https://doi.org/10.1126/science.1117755

Pätzold, M., Häusler, B., Tyler, G. L., Andert, T., Asmar, S. W., Bird, M. K., Dehant, V., Hinson, D. P., Rosenblatt, P., … Remus, S. (2016). Mars express 10 years at mars: observations by the Mars express radio science experiment (MaRS). Planet. Space Sci., 127, 44–90. https://doi.org/10.1016/j.pss.2016.02.013

Peverall, R., Rosén, S., Peterson, J. R., Larsson, M., Al-Khalili, A., Vikor, L., Semaniak, J., Bobbenkamp, R., Le Padellec, A., … van der Zande, W. J. (2001). Dissociative recombination and excitation of ${\rm O}_2^+$ : Cross sections, product yields and implications for studies of ionospheric airglows. J. Chem. Phys., 114(15), 6679–6689. https://doi.org/10.1063/1.1349079

Rishbeth, H., and Mendillo, M. (2004). Ionospheric layers of Mars and Earth. Planet. Space Sci., 52(9), 849–852. https://doi.org/10.1016/j.pss.2004.02.007

Safaeinili, A., Kofman, W., Mouginot, J., Gim, Y., Herique, A., Ivanov, A. B., Plaut, J. J., and Picardi, G. (2007). Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett., 34(23), L23204. https://doi.org/10.1029/2007GL032154

Schneider, N. M., Deighan, J. I., Stewart, A. I. F., McClintock, W. E., Jain, S. K., Chaffin, M. S., Stiepen, A., Crismani, M., Plane, J. M. C., … Jakosky, B. M. (2015). MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophys. Res. Lett., 42(12), 4755–4761. https://doi.org/10.1002/2015GL063863

Schunk, R. W. (1977). Mathematical structure of transport equations for multispecies flows. Rev. Geophys. Space Phys., 15(4), 429–445. https://doi.org/10.1029/RG015i004p00429

Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512

Tyler, G. L., Balmino, G., Hinson, D. P., Sjogren, W. L., Smith, D. E., Woo, R., Asmar, S. W., Connally, M. J., Hamilton, C. L., and Simpson, R. A. (1992). Radio science investigations with Mars Observer. J. Geophys. Res., 97(E5), 7759–7779. https://doi.org/10.1029/92JE00513

Tyler, G. L., Balmino, G., Hinson, D. P., Sjogren, W. L., Smith, D. E., Simpson, R. A., Asmar, S. W., Priest, P., and Twicken, J. D. (2001). Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit. J. Geophys. Res. Planets, 106(E10), 23327–23348. https://doi.org/10.1029/2000JE001348

Verigin, M. I., Gringauz, K. I., Shutte, N. M., Haider, S. A., Szego, K., Kiraly, P., Nagy, A. F., and Gombosi, T. I. (1991). On the possible source of the ionization in the nighttime Martian ionosphere: 1. Phobos 2 Harp electron spectrometer measurements. J. Geophys. Res. Space Phys., 96(A11), 19307–19313. https://doi.org/10.1029/91JA00924

Vogt, M. F., Withers, P., Mahaffy, P. R., Benna, M., Elrod, M. K., Halekas, J. S., Connerney, J. E. P., Espley, J. R., Mitchell, D. L., … Jakosky, B. M. (2015). Ionopause-like density gradients in the Martian ionosphere: A first look with MAVEN. Geophys. Res. Lett., 42(21), 8885–8893. https://doi.org/10.1002/2015GL065269

Weber, T., Brain, D., Mitchell, D., Xu, S. S., Connerney, J., and Halekas, J. (2017). Characterization of low-altitude nightside Martian magnetic topology using electron pitch angle distributions. J. Geophys. Res. Space Phys., 122(10), 9777–9789. https://doi.org/10.1002/2017JA024491

Withers, P., and Mendillo, M. (2005). Response of peak electron densities in the Martian ionosphere to day-to-day changes in solar flux due to solar rotation. Planet. Space Sci., 53(14-15), 1401–1418. https://doi.org/10.1016/j.pss.2005.07.010

Withers, P., Mendillo, M., Hinson, D. P., and Cahoy, K. (2008). Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment. J. Geophys. Res. Space Phys., 113(A12), A12314. https://doi.org/10.1029/2008JA013636

Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.027

Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012a). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res. Space Phys., 117(A12), A12307. https://doi.org/10.1029/2012JA018185

Withers, P., Fallows, K., Girazian, Z., Matta, M., Häusler, B., Hinson, D., Tyler, L., Morgan, D., Pätzold, M., … Witasse, O. (2012b). A clear view of the multifaceted dayside ionosphere of Mars. Geophys. Res. Lett., 39(18), L18202. https://doi.org/10.1029/2012GL053193

Withers, P., Moore, L., Cahoy, K., and Beerer, I. (2014). How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties. Planet. Space Sci., 101, 77–88. https://doi.org/10.1016/j.pss.2014.06.011

Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019). The morphology of the topside Martian ionosphere: Implications on bulk ion flow. J. Geophys. Res., 124(3), 734–751. https://doi.org/10.1029/2018JE005895

Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, F., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, M. (2016). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527

Xu, S. S., Mitchell, D., Liemohn, M., Fang, X. H., Ma, Y. J., Luhmann, J., Brain, D., Steckiewicz, M., Mazelle, C., … Jakosky, B. (2017). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res. Space Phys., 122(2), 1831–1852. https://doi.org/10.1002/2016JA023467

Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res. Space Phys., 95(A10), 17095–17102. https://doi.org/10.1029/JA095iA10p17095

Zhang, S. J., Cui, J., Guo, P., Li, J. L., Ping, J. S., Jian, N. C., and Zhang K. F. (2015). Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements. Adv. Space Res., 55(9), 2177–2189. https://doi.org/10.1016/j.asr.2015.01.030

[1]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[2]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[3]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[4]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

[5]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang