Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

2018, 2(5): 371-383. doi: 10.26464/epp2018035

PLANETARY SCIENCE

Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

Lunar and Planetary Science Laboratory, Macau University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Macau, China

Corresponding author: XuDong Gu, guxudong@whu.edu.cnBinBin Ni, bbni@whu.edu.cn

Received Date: 2018-07-10
Web Publishing Date: 2018-09-01

Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient magnetospheric and wave parameters has been investigated, there is rather limited understanding regarding the extent to which the dynamic evolution of Jovian radiation belt electrons, under the impact of chorus wave scattering, depends on the electron distribution profiles. We adopt a group of reasonable initial conditions based upon the available observations and models for quantitative analyses. We find that inclusion of pitch angle variation in initial conditions can result in increased electron losses at lower pitch angles and substantially modify the pitch angle evolution profiles of > ~500 keV electrons, while variations of electron energy spectrum tend to modify the evolution primarily of 1 MeV and 5 MeV electrons. Our results explicitly demonstrate the importance to the radiation belt electron dynamics in the Jovian magnetosphere of the initial shape of the electron phase space density, and indicate the extent to which variations in electron energy spectrum and pitch angle distribution can contribute to the evolution of Jovian radiation belt electrons caused by chorus wave scattering.

Key words: Jovian radiation belt, whistler-mode chorus, wave-particle interactions, electron distribution profile

Bagenal, F., and Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res., 116(A5), A05209. https://doi.org/10.1029/2010JA016294

Bolton, S. J., Janssen, M., Thorne, R., Levin, S., Klein, M., Gulkis, S., Bastian, T., Sault, R., Elachi, C., … West, R. (2002). Ultra-relativistic electrons in Jupiter's radiation belts. Nature, 415(6875), 987–991. https://doi.org/10.1038/415987a

Carr, T. D., and Gulkis, S. (1969). The magnetosphere of Jupiter. Annu. Rev. Astron. Astrophys., 7, 577–618. https://doi.org/10.1146/annurev.aa.07.090169.003045

de Soria-Santacruz, M., Shprits, Y. Y., Drozdov, A., Menietti, J. D., Garrett, H. B., Zhu, H., Kellerman, A. C., and Horne, R. B. (2017). Interactions between energetic electrons and realistic whistler mode waves in the Jovian magnetosphere. J. Geophys. Res., 122(5), 5355–5364. https://doi.org/10.1002/2017JA023975

Horne, R. B., Thorne, R. M., Glauert, S. A., Menietti, J. D., Shprits, Y. Y., and Gurnett, D. A. (2008). Gyro-resonant electron acceleration at Jupiter. Nat. Phys., 4(4), 301–304. https://doi.org/10.1038/nphys897

Khurana, K. K. (1997). Euler potential models of Jupiter’s magnetospheric field. J. Geophys. Res., 102(A6), 11295–11306. https://doi.org/10.1029/97JA00563

Lenchek, A. M., Singer, S. F., and Wentworth, R. C. (1961). Geomagnetically trapped electrons from cosmic ray albedo neutrons. J. Geophys. Res., 66(12), 4027–4046. https://doi.org/10.1029/JZ066i012p04027

Menietti, J. D., Groene, J. B., Averkamp, T. F., Horne, R. B., Woodfield, E. E., Shprits, Y. Y., de Soria-Santacruz Pich, M., and Gurnett, D. A. (2016). Survey of whistler mode chorus intensity at Jupiter. J. Geophys. Res., 121(10), 9758–9770. https://doi.org/10.1002/2016JA022969

Ni, B. B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J. (2008). Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation. Geophys. Res. Lett., 35(11), L11106. https://doi.org/10.1029/2008GL034032

Ni, B. B., Thorne, R. M., Meredith, N. P., Horne, R. B., and Shprits, Y. Y. (2011). Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2 Evaluation for whistler mode chorus waves. J. Geophys. Res., 116(A4), A04219. https://doi.org/10.1029/2010JA016233

Ni, B. B., Cao, X., Zou, Z. Y., Zhou, C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., … and Xie, L. (2015). Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. J. Geophys. Res., 120(9), 7357–7373. https://doi.org/10.1002/2015JA021466

Ni, B. B., Huang, J., Ge, Y. S., Cui, J., Wei, Y., Gu, X. D., Fu, S., Xiang, Z., and Zhao, Z. Y. (2018). Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters. Earth Planet. Phys., 2(1), 1–14. https://doi.org/10.26464/epp2018001

Persoon, A. M., Gurnett, D. A., Kurth, W. S., and Groene, J. B. (2006). A simple scale height model of the electron density in Saturn’s plasma disk. Geophys. Res. Lett., 33(18), L18106. https://doi.org/10.1029/2006GL027090

Shprits, Y. Y., Menietti, J. D., Gu, X., Kim, K. C., and Horne, R. B. (2012). Gyroresonant interactions between the radiation belt electrons and whistler mode chorus waves in the radiation environments of Earth, Jupiter, and Saturn: A comparative study. J. Geophys. Res., 117(A11), A11216. https://doi.org/10.1029/2012JA018031

Tao, X., Thorne, R. M., Horne, R. B., Ni, B., Menietti, J. D., Shprits, Y. Y., and Gurnett, D. A. (2011). Importance of plasma injection events for energization of relativistic electrons in the Jovian magnetosphere. J. Geophys. Res., 116(A01), A01206. https://doi.org/10.1029/2010JA01610

Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Baker, D. N., Spence, H. E., Reeves, G. D., Henderson, M. G., … Angelopoulos, V. (2013). Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm. Geophys. Res. Lett., 40(14), 3507–3511. https://doi.org/10.1002/grl.50627

Tomás, A. T., Woch, J., Krupp, N., Lagg, A., Glassmeier, K. H., and Kurth, W. S. (2004). Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions. J. Geophys. Res., 109(A6), A06203. https://doi.org/10.1029/2004JA010405

Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2013). Electron acceleration at Jupiter: Input from cyclotron-resonant interaction with whistler-mode chorus waves. Ann. Geophys., 31(10), 1619–1630. https://doi.org/10.5194/angeo-31-1619-2013

Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2014). The origin of Jupiter's outer radiation belt. J. Geophys. Res., 119(5), 3490–3502. https://doi.org/10.1002/2014JA019891

Xiao, F. L., Su, Z. P., Zheng, H. N., and Wang, S. (2009). Modeling of outer radiation belt electrons by multidimensional diffusion process. J. Geophys. Res., 114(A3), A03201. https://doi.org/10.1029/2008JA013580

[1]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[2]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[3]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[4]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[5]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[6]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[7]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[8]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[9]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[10]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[11]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[12]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang