Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Le, H. J., Liu, L. B., Chen, Y. D., Zhang, H. (2019). Anomaly distribution of ionospheric total electron content responses to some solar flares. Earth Planet. Phys., 3(6), 481–488.doi: 10.26464/epp2019053

2019, 3(6): 481-488. doi: 10.26464/epp2019053

SPACE PHYSICS: IONOSPHERIC PHYSICS

Anomaly distribution of ionospheric total electron content responses to some solar flares

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Innovation Academy of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 

College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: HuiJun Le, lehj@mail.iggcas.ac.cn

Received Date: 2019-09-21
Web Publishing Date: 2019-11-01

Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle (SZA): the ionospheric responses are negatively related to the SZAs. The largest enhancement in electron density always occurs around the subsolar point. However, from 2001 to 2014, the global distribution of total electron content (TEC) responses showed no obvious relationship between the increases in TEC and the SZA during some solar flares. During these solar flares, the greatest enhancements in TEC did not appear around the subsolar point, but rather far away from the subsolar point. The distribution of TEC enhancements showed larger TEC enhancements along the same latitude. The distribution of anomalous ionospheric responses to the solar flares was not structured the same as traveling ionospheric disturbances. This anomaly distribution was also unrelated to the distribution of background neutral density. It could not be explained by changes in the photochemical process induced by the solar flares. Thus, the transport process could be one of the main reasons for the anomaly distribution of ionospheric responses to the solar flares. This anomaly distribution also suggests that not only the photochemical process but also the transport process could significantly affect the variation in ionospheric electron density during some solar flares.

Key words: solar flare; ionospheric response; transport process

Afraimovich, E. L. (2000). GPS global detection of the ionospheric response to solar flares. Radio Sci., 35(6), 1417–1424. https://doi.org/10.1029/2000RS002340

Cherniak, I., Zakharenkova, I., and Redmon, R. J. (2015). Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: Ground-based GPS measurements. Space Weather, 13(9), 585–597. https://doi.org/10.1002/2015SW001237

Coster, A., and Skone, S. (2009). Monitoring storm-enhanced density using IGS reference station data. J. Geod., 83(3-4), 345–351. https://doi.org/10.1007/s00190-008-0272-3

Foster, J. C. (1993). Storm time plasma transport at middle and high latitudes. J. Geophys. Res., 98(A2), 1675–1689. https://doi.org/10.1029/92JA02032

Le, H. J., Liu, L. B., Chen, B., Lei, J. H., Yue, X. N., and Wan, W. X. (2007). Modeling the responses of the middle latitude ionosphere to solar flares. J. Atmos. Sol. Terr. Phys., 69(13), 1587–1598. https://doi.org/10.1016/j.jastp.2007.06.005

Le, H. J., Liu, L. B., He, H., and Wan, W. X. (2011). Statistical analysis of solar EUV and X-ray flux enhancements induced by solar flares and its implication to upper atmosphere. J. Geophys. Res., 116(A11), A11301. https://doi.org/10.1029/2011JA016704

Le, H. J., Liu, L. B., Chen, Y. D., and Wan, W. X. (2013). Statistical analysis of ionospheric responses to solar flares in the solar cycle 23. J. Geophys. Res., 118(1), 576–582. https://doi.org/10.1029/2012JA017934

Le, H. J., Ren, Z. P., Liu, L. B., Chen, Y. D., and Zhang, H. (2015). Global thermospheric disturbances induced by a solar flare: a modeling study. Earth Planets Space, 67, 3. https://doi.org/10.1186/s40623-014-0166-y

Le, H. J., Liu, L. B., Ren, Z. P., Chen, Y. D., Zhang, H., and Wan, W. X. (2016). A modeling study of global ionospheric and thermospheric responses to extreme solar flare. J. Geophys. Res., 121(1), 832–840. https://doi.org/10.1002/2015JA021930

Leonovich, L. A., Afraimovich, E. L., Romanova, E. B., and Taschilin, A. V. (2002). Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network. Ann. Geophys., 20(12), 1935–1941. https://doi.org/10.5194/angeo-20-1935-2002

Leonovich, L. A., Tashchilin, A. V., and Portnyagina, O. Y. (2010). Dependence of the ionospheric response on the solar flare parameters based on the theoretical modeling and GPS data. Geomagn. Aeronomy, 50(2), 201–210. https://doi.org/10.1134/S0016793210020076

Liu, J. Y., Lin, C. H., Tsai, H. F., and Liou, Y. A. (2004). Ionospheric solar flare effects monitored by the ground-based GPS receivers: theory and observation. J. Geophys. Res., 109(A1), A01307. https://doi.org/10.1029/2003JA009931

Liu, J. Y., Lin, C. H., Chen, Y. I., Lin, Y. C., Fang, T. W., Chen, C. H., Chen, Y. C., and Hwang, J. J. (2006). Solar flare signatures of the ionospheric GPS total electron content. J. Geophys. Res., 111(A5), A05308. https://doi.org/10.1029/2005JA011306

Manju, G., Simi, K. G., and Nayar, S. R. P. (2012). Analysis of solar EUV and X-ray flux enhancements during intense solar flare events and the concomitant response of equatorial and low latitude upper atmosphere. J. Atmos. Sol. Terr. Phys., 86, 1–5. https://doi.org/10.1016/j.jastp.2012.05.008

Maruyama, T. (2006). Extreme enhancement in total electron content after sunset on 8 November 2004 and its connection with storm enhanced density. Geophys. Res. Lett., 33(20), L20111. https://doi.org/10.1029/2006GL027367

Mendillo, M., and Evans, J. V. (1974). Incoherent scatter observations of the ionospheric response to a large solar flare. Radio Sci., 9(2), 197–203. https://doi.org/10.1029/RS009i002p00197

Nogueira, P. A. B., Souza, J. R., Abdu, M. A., Paes, R. R., Sousasantos, J., Marques, M. S., Bailey, G. J., Denardini, C. M., Batista, I. S., … Chen, S. S. (2015). Modeling the equatorial and low-latitude ionospheric response to an intense X-class solar flare. J. Geophys. Res., 120(4), 3021–3032. https://doi.org/10.1002/2014JA020823

Pawlowski, D. J., and Ridley, A. J. (2008). Modeling the thermospheric response to solar flares. J. Geophys. Res., 113(A10), A10309. https://doi.org/10.1029/2008JA013182

Pawlowski, D. J., and Ridley, A. J. (2011). The effects of different solar flare characteristics on the global thermosphere. J. Atmos. Sol. Terr. Phys., 73(13), 1840–1848. https://doi.org/10.1016/j.jastp.2011.04.004

Qian, L. Y., Burns, A. G., Chamberlin, P. C., and Solomon, S. C. (2010). Flare location on the solar disk: modeling the thermosphere and ionosphere response. J. Geophys. Res., 115(A9), A09311. https://doi.org/10.1029/2009JA015225

Qian, L. Y., Burns, A. G., Solomon, S. C., and Chamberlin, P. C. (2012). Solar flare impacts on ionospheric electrodyamics. Geophys. Res. Lett., 39(6), L06101. https://doi.org/10.1029/2012GL051102

Tsurutani, B. T., Judge, D. L., Guarnieri, F. L., Gangopadhyay, P., Jones, A. R., Nuttall, J., Zambon, G. A., Didkovsky, L., Mannucci, A. J., … Viereck, R. (2005). The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the Bastille Day event. Geophys. Res. Lett., 32(3), L03S09. https://doi.org/10.1029/2004GL021475

Wan, W. X., Liu, L. B., Yuan, H., Ning, B. Q., and Zhang, S. R. (2005). The GPS measured SITEC caused by the very intense solar flare on July 14, 2000. Adv. Space Res., 36(12), 2465–2469. https://doi.org/10.1016/j.asr.2004.01.027

Xiong, B., Wan, W. X., Liu, L. B., Withers, P., Zhao, B. Q., Ning, B. Q., Wei, Y., Le, H. J., Ren, Z. P., … Liu, J. (2011). Ionospheric response to the X-class solar flare on 7 September 2005. J. Geophys. Res., 116(A11), A11317. https://doi.org/10.1029/2011JA016961

Xiong, B., Wan, W. X., Ning, B. Q., Ding, F., Hu, L. H., and Yu, Y. (2014). A statistic study of ionospheric solar flare activity indicator. Space Wea., 12(1), 29–40. https://doi.org/10.1002/2013SW001000

Xiong, B., Wan, W. X., Yu, Y., and Hu, L. H. (2016). Investigation of ionospheric TEC over China based on GNSS data. Adv. Space Res., 58(6), 867–877. https://doi.org/10.1016/j.asr.2016.05.033

Xiong, B., Li, X. L., Wan, W. X., She, C. L., Hu, L. H., Ding, F., and Zhao, B. Q. (2019). A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem. Chinese J. Geophys. (in Chinese) , 62(4), 1199–1209. https://doi.org/10.6038/cjg2019M0318

Yizengaw, E., Moldwin, M. B., and Galvan, D. A. (2006). Ionospheric signatures of a plasmaspheric plume over Europe. Geophys. Res. Lett., 33(17), L17103. https://doi.org/10.1029/2006GL026597

Zhang, D. H., Xiao, Z., and Chang, Q. (2002). The correlation of flare's location on solar disc and the sudden increase of total electron content. Chin. Sci. Bull., 47(1), 83–85. https://doi.org/10.1360/02tb9017

Zhang, D. H., and Xiao, Z. (2005). Study of ionospheric response to the 4B flare on 28 October 2003 using international GPS service network data. J. Geophys. Res., 110(A3), A03307. https://doi.org/10.1029/2004JA010738

Zhang, D. H., Mo, X. H., Cai, L., Zhang, W., Feng, M., Hao, Y. Q., and Xiao, Z. (2011). Impact factor for the ionospheric total electron content response to solar flare irradiation. J. Geophys. Res., 116(A4), A04311. https://doi.org/10.1029/2010JA016089

Zhang, R. L., Liu, L. B., Le, H. J., and Chen, Y. D., (2017). Equatorial ionospheric electrodynamics during solar flares. Geophys. Res. Lett., 44(10), 4558–4565. https://doi.org/10.1002/2017GL073238

Zou, S. S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., and Ruohoniemi, J. M. (2013). Multi-instrument observations of SED during 24-25 October 2011 storm: Implications for SED formation processes. J. Geophys. Res., 118(12), 7798–7809. https://doi.org/10.1002/2013JA018860

Zou, S. S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., and Ruohoniemi, J. M. (2014). On the generation/decay of the storm-enhanced density plumes: role of the convection flow and field-aligned ion flow. J. Geophys. Res., 119(10), 8543–8559. https://doi.org/10.1002/2014JA020408

[1]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[2]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[3]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[4]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[5]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[6]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[7]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[8]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[9]

ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007

[10]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[11]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[12]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[13]

Yang Li, QuanLiang Chen, JianPing Li, WenJun Zhang, MinHong Song, Wei Hua, HongKe Cai, XiaoFei Wu, 2019: The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models, Earth and Planetary Physics, 3, 400-413. doi: 10.26464/epp2019041

[14]

WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Anomaly distribution of ionospheric total electron content responses to some solar flares

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang