Citation: Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

2018, 2(2): 120-138. doi: 10.26464/epp2018013

SOLID EARTH: GEODESY AND GRAVITY

Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data

1. 

Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

2. 

Department of Earth Sciences, University of Milan, Via Cicognara 7, Milano, 20133, Italy

3. 

Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Xin Zhou, zhouxin05@mails.ucas.ac.cnWenKe Sun, sunw@ucas.ac.cn

Received Date: 2018-01-02
Web Publishing Date: 2018-03-01

Data obtained by GRACE (Gravity Recovery and Climate Experiment) have been used to invert for the seismic source parameters of megathrust earthquakes under the assumption of either uniform slip over an entire fault or a point-like seismic source. Herein, we further extend the inversion of GRACE long-wavelength gravity changes to heterogeneous slip distributions during the 2011 Tohoku earthquake using three fault models: (I) a constant-strike and constant-dip fault, (II) a variable dip fault, and (III) a realistically varying strike fault. By removing the post-seismic signal from the time series, and taking the effect of ocean water redistribution into account, we invert for slip models I, II, and III using co-seismic gravity changes measured by GRACE, de-striped by DDK3 decorrelation filter. The total seismic moments of our slip models, with respective values of 4.9×1022 Nm, 5.1×1022 Nm, and 5.0×1022 Nm, are smaller than those obtained by other studies relying on GRACE data. The resulting centroids are also located at greater depths (20 km, 19.8 km, and 17.4 km, respectively). By combining onshore GPS, GPS-Acoustic, and GRACE data, we obtain a jointly inverted slip model with a seismic moment of 4.8×1022 Nm, which is larger than the seismic moment obtained using only the GPS displacements. We show that the slip inverted from low degree space-borne gravimetric data, which contains information at the ocean region, is affected by the strike of the arcuate trench. The space-borne gravimetric data help us constrain the source parameters of a megathrust earthquake within the frame of heterogeneous slip models.

Key words: GRACE; slip distribution; inversion; co-seismic gravity changes; GPS

Broerse, D. B. T., Vermeersen, L. L. A., Riva, R. E. M., and van der Wal, W. (2011). Ocean contribution to co-seismic crustal deformation and geoid anomalies: Application to the 2004 December 26 Sumatra–Andaman earthquake. Earth Planet. Sci. Lett., 305(3–4), 341–349. https://doi.org/10.1016/j.jpgl.2011.03.011 doi: 10.1016/j.jpgl.2011.03.011.

Cambiotti, G., and Sabadini, R. (2012). A source model for the great 2011 Tohoku earthquake (Mw=9.1) from inversion of GRACE gravity data. Earth Planet. Sci. Lett., 335–336, 72–79. https://doi.org/10.1016/j.jpgl.2012.05.002 doi: 10.1016/j.jpgl.2012.05.002.

Cambiotti, G., and Sabadini, R. (2013). Gravitational seismology retrieving Centroid-Moment-Tensor solution of the 2011 Tohoku earthquake. J. Geophys. Res. Solid Earth, 118(1), 183–194. https://doi.org/10.1029/2012JB009555 doi: 10.1029/2012JB009555.

Chen, J. L., Wilson, C. R., Tapley, B. D., and Grand, S. (2007). GRACE detects coseismic and postseismic deformation from the Sumatra–Andaman earthquake. Geophys. Res. Lett., 34(13), L13302. https://doi.org/10.1029/2007GL030356 doi: 10.1029/2007GL030356.

Chen, J, W., Cui, X. F., and Hu, X. P. (2017). Middle-small earthquake relocation and tectonic characteristics of Tangshan and its Adjacent Area. North China Earthq. Sci. (in Chinese), 35(1), 1–9. https://doi.org/10.3969/j.issn.1003-1375.2017.01.001 doi: 10.3969/j.issn.1003-1375.2017.01.001.

Cheng, M. K., and Tapley, B. D. (2004). Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. Solid Earth, 109(B9), B09402, https://doi.org/10.1029/2004JB003028 doi: 10.1029/2004JB003028.

Dai, C. L., Shum, C. K., Wang, R. J., Wang, L., Guo, J. Y., Shang, K., and Tapley, B. (2014). Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes. Geophys. Res. Lett., 41(6), 1929–1936. https://doi.org/10.1002/2013GL059178 doi: 10.1002/2013GL059178.

De Linage, C., Rivera, L., Hinderer, J., Boy, J. P., Rogister, Y., Lambotte, S., and Biancale, R. (2009). Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys. J. Int., 176(3), 695–714. https://doi.org/10.1111/j.1365-246X.2008.04025.x doi: 10.1111/j.1365-246X.2008.04025.x.

Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference earth model. Phys. Earth Planet. Inter., 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 doi: 10.1016/0031-9201(81)90046-7.

Freymueller, J., King, N. E., and Segall, P. (1994). The co-seismic slip distribution of the Landers earthquake. Bull. Seismol. Soc. Am., 84(3), 646–659.

Fuchs, M. J., Hooper, A., Broerse, T., and Bouman, J. (2016). Distributed fault slip model for the 2011 Tohoku-Oki earthquake from GNSS and GRACE/GOCE satellite gravimetry. J. Geophys. Res. Solid Earth, 121(2), 1114–1130. https://doi.org/10.1002/2015JB012165 doi: 10.1002/2015JB012165.

Gross, R. S., and Chao, B. F. (2001). The gravitational signature of earthquakes. In M. G. Sideris. (Ed.), Gravity, Geoid and Geodynamics 2000 (Vol. 123, pp. 205–210). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-04827-6_34

Han, S. C., Shum, C. K., Bevis, M., Ji, C., and Kuo, C. Y. (2006). Crustal dilatation observed by GRACE after the 2004 Sumatran–Andaman earthquake. Science, 313(5787), 658–662. https://doi.org/10.1126/science.1128661 doi: 10.1126/science.1128661.

Han, S. C., Sauber, J., and Riva, R. (2011). Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(24), L24312. https://doi.org/10.1029/2011GL049975 doi: 10.1029/2011GL049975.

Han, S. C., Sauber, J., and Pollitz, F. (2014). Broadscale postseismic gravity change following the 2011 Tohoku-Oki earthquake and implication for deformation by viscoelastic relaxation and afterslip. Geophys. Res. Lett., 41(16), 5797–5805. http://dx.doi.org/110.1002/2014GL060905 doi: 10.1002/2014GL060905.

Hansen, P. C., and O'Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 14(6), 1487–1503. http://dx.doi.org/110.1137/0914086 doi: 10.1137/0914086.

Harris, R. A., and Segall, P. (1987). Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault. J. Geophys. Res. Solid Earth, 92(B8), 7945–7962. https://doi.org/10.1029/JB092iB08p07945 doi: 10.1029/JB092iB08p07945.

Hayes, G. P. (2011). Rapid source characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake. Earth Planets Space, 63(7), 529–534. https://doi.org/10.5047/eps.2011.05.012 doi: 10.5047/eps.2011.05.012.

Hayes, G. P., Wald, D. J., and Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res. Solid Earth, 117(B1), B01302. https://doi.org/10.1029/2011JB008524 doi: 10.1029/2011JB008524.

Heiskanen, W. A., and Moritz, H. (1967). Physical Geodesy. San Francisco, London: W. H. Freeman and Company.

Heki, K., and Matsuo, K. (2010). Coseismic gravity changes of the 2010 earthquake in Central Chile from satellite gravimetry. Geophys. Res. Lett., 37(24), L24306. https://doi.org/10.1029/2010GL045335 doi: 10.1029/2010GL045335.

Ide, S., Baltay, A., and Beroza, G. C. (2011). Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science, 332(6063), 1426–1429. https://doi.org/10.1126/science.1207020 doi: 10.1126/science.1207020.

Jónsson, S., Zebker, H., Segall, P., and Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 hector mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am., 92(4), 1377–1389. https://doi.org/10.1785/0120000922 doi: 10.1785/0120000922.

Kido, M., Osada, Y., Fujimoto, H., Hino, R., and Ito, Y. (2011). Trench-normal variation in observed seafloor displacements associated with the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(24), L24303. https://doi.org/10.1029/2011GL050057 doi: 10.1029/2011GL050057.

Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H., Sakai, S., … Okada, T. (2011). A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett., 310(3–4), 480–487. https://doi.org/10.1016/j.jpgl.2011.09.009 doi: 10.1016/j.jpgl.2011.09.009.

Kusche, J. (2007). Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod., 81(11), 733–749. https://doi.org/10.1007/s00190-007-0143-3 doi: 10.1007/s00190-007-0143-3.

Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R., (2009). Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a Hydrological Model. J. Geod., 83(10), 903–913. https://doi.org/10.1007/s00190-009-0308-3 doi: 10.1007/s00190-009-0308-3.

Lawson, C. L., and Hanson, R. L. (1974). Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall.

Lay, T., Ammon, C. J., Kanamori, H., Xue, L., and Kim, M. J. (2011). Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63(7), 687–692. https://doi.org/10.5047/eps.2011.05.033 doi: 10.5047/eps.2011.05.033.

Lee, S. J., Huang, B. S., Ando, M., Chiu, H. C., and Wang, J. H. (2011). Evidence of large scale repeating slip during the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(19), L19306. https://doi.org/10.1029/2011GL049580 doi: 10.1029/2011GL049580.

Loveless, J. P., and Meade, B. J. (2011). Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW=9.0 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(17), L17306. https://doi.org/10.1029/2011GL048561 doi: 10.1029/2011GL048561.

Matsuo, K., and Heki, K. (2011). Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry. Geophys. Res. Lett., 38(7), L00G12. https://doi.org/10.1029/2011GL049018 doi: 10.1029/2011GL049018.

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 75(4), 1135–1154.

Okubo, S. (1992). Gravity and potential changes due to shear and tensile faults in a half-space. J. Geophys. Res. Solid Earth, 97(B5), 7137–7144. https://doi.org/10.1029/92JB00178 doi: 10.1029/92JB00178.

Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., and Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356), 373–376. https://doi.org/10.1038/nature10227 doi: 10.1038/nature10227.

Ozawa, S., Nishimura, T., Munekane, H., Suito, H., Kobayashi, T., Tobita, M., and Imakiire, T. (2012). Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. J. Geophys. Res. Solid Earth, 117(B7), B07404. https://doi.org/10.1029/2011JB009120 doi: 10.1029/2011JB009120.

Pollitz, F. F., Bürgmann, R., and Banerjee, P. (2011). Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophys. Res. Lett., 38(7), L00G08. https://doi.org/10.1029/2011GL048632 doi: 10.1029/2011GL048632.

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., … Toll, D. (2004). The global land data assimilation system. Bull. Am. Meteor. Soc., 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381 doi: 10.1175/BAMS-85-3-381.

Sato, M., Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., and Asada, A. (2011). Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science, 332(6036), 1395. https://doi.org/10.1126/science.1207401 doi: 10.1126/science.1207401.

Shen, Z. K., Sun, J. B., Zhang, P. Z., Wan, Y. G., Wang, M., Bürgmann, R., Zeng, Y. H., Gan, W. J., Liao, H., and Wang, Q. L. (2009). Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat. Geosci., 2(10), 718–724. https://doi.org/10.1038/NGEO636 doi: 10.1038/NGEO636.

Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., Meng, L., Ampuero, J. P., Wei, S., … Webb, F. H. (2011). The 2011 Magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries. Science, 332(6036), 1421–1425. https://doi.org/10.1126/science.1206731 doi: 10.1126/science.1206731.

Sun, W. K., and Okubo, S. (1993). Surface potential and gravity changes due to internal dislocations in a spherical earth— I. Theory for a point dislocation. Geophys. J. Int., 114(3), 569–592. https://doi.org/10.1111/j.1365-246X.1993.tb06988.x doi: 10.1111/j.1365-246X.1993.tb06988.x.

Sun, W. K., and Okubo, S. (2004). Coseismic deformations detectable by satellite gravity missions: a case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain. J. Geophys. Res. Solid Earth, 109(B4), B04405. https://doi.org/10.1029/2003JB002554 doi: 10.1029/2003JB002554.

Sun, W. K., Okubo, S., Fu, G. Y., and Araya, A. (2009). General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point. Geophys. J. Int., 177(3), 817–833. https://doi.org/10.1111/j.1365-246X.2009.04113.x doi: 10.1111/j.1365-246X.2009.04113.x.

Sun, W. K., and Zhou, X. (2012). Coseismic deflection change of the vertical caused by the 2011 Tohoku-Oki earthquake (Mw9.0). Geophys. J. Int., 189(2), 937–955. https://doi.org/10.1111/j.1365-246X.2012.05434.x doi: 10.1111/j.1365-246X.2012.05434.x.

Swenson, S., and Wahr, J. (2006). Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33(8), L08402. https://doi.org/10.1029/2005GL025285 doi: 10.1029/2005GL025285.

Tajima, F., Mori, J., and Kennett, B. L. N. (2013). A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): Large-scale rupture across heterogeneous plate coupling. Tectonophysics, 586, 15–34. https://doi.org/10.1016/j.tecto.2012.09.014 doi: 10.1016/j.tecto.2012.09.014.

Takahashi, N., Kodaira, S., Tsuru, T., Park, J. O., Kaneda, Y., Suyehiro, K., Kinoshita, H., Abe, S., Nishino, M., and Hino, R. (2004). Seismic structure and seismogenesis off Sanriku region, northeastern Japan. Geophys. J. Int., 159(1), 129–145. https://doi.org/10.1111/j.1365-246X.2004.02350.x doi: 10.1111/j.1365-246X.2004.02350.x.

Tanaka, Y., and Heki, K. (2014). Long- and short-term postseismic gravity changes of megathrust earthquakes from satellite gravimetry. Geophys. Res. Lett., 41(15), 5451–5456. https://doi.org/10.1002/2014GL060559 doi: 10.1002/2014GL060559.

Tsuru, T., Park, J. O., Miura, S., Kodaira, S., Kido, Y., and Hayashi, T. (2002). Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling. J. Geophys. Res. Solid Earth, 107(B12), ESE 11-1–ESE 11-15. https://doi.org/10.1029/2001JB001664 doi: 10.1029/2001JB001664.

Wang, L., Shum, C. K., and Jekeli, C. (2012a). Gravitational gradient changes following the 2004 December 26 Sumatra–Andaman earthquake inferred from GRACE. Geophys. J. Int., 191(3), 1109–1118. https://doi.org/10.1111/j.1365-246X.2012.05674.x doi: 10.1111/j.1365-246X.2012.05674.x.

Wang, L., Shum, C. K., Simons, F. J., Tassara, A., Erkan, K., Jekeli, C., Braun, A., Kuo, C., Lee, H., and Yuan, D. N. (2012b). Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations. Earth Planet. Sci. Lett., 335-336, 167–179. https://doi.org/10.1016/j.jpgl.2012.04.044 doi: 10.1016/j.jpgl.2012.04.044.

Wang, L., Shum, C. K., Simons, F. J., Tapley, B., and Dai, C. L. (2012c). Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry. Geophys. Res. Lett., 39(7), L07301. https://doi.org/10.1029/2012GL051104 doi: 10.1029/2012GL051104.

Wang, Q., Qiao, X. J., Lan, Q. G., Freymueller, J., Yang, S. M., Xu, C. J., Yang, Y. L., You, X. Z., Tan, K., and Chen, G. (2011). Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nat. Geosci., 4(9), 634–640. https://doi.org/10.1038/NGEO1210 doi: 10.1038/NGEO1210.

Wang, R. J., Lorenzo-Martín, F., and Roth, F. (2006). PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci., 32(4), 527–541. https://doi.org/10.1016/j.cageo.2005.08.006 doi: 10.1016/j.cageo.2005.08.006.

Yagi, Y., and Fukahata, Y. (2011). Rupture process of the 2011 Tohoku-Oki earthquake and absolute elastic strain release. Geophys. Res. Lett., 38(19), L19307. https://doi.org/10.1029/2011GL048701 doi: 10.1029/2011GL048701.

Yokota, Y., Koketsu, K., Fujii, Y., Satake, K., Sakai, S., Shinohara, M., and Kanazawa, T. (2011). Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophys. Res. Lett., 38(7), L00G21. https://doi.org/10.1029/2011GL050098 doi: 10.1029/2011GL050098.

Zhou, X., Sun, W. K., and Fu, G. Y. (2011). Gravity satellite GRACE detects coseismic gravity changes caused by 2010 Chile Mw 8.8 earthquake. Chinese J. Geophys. (in Chinese), 54(7), 1745–1749. https://doi.org/10.3969/j.issn.0001-5733.2011.07.007 doi: 10.3969/j.issn.0001-5733.2011.07.007.

Zhou, X., Sun, W. K., Zhao, B., Fu, G. Y., Dong, J., and Nie, Z. S. (2012). Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw = 9.0 Tohoku-Oki earthquake. J. Geophys. Res. Solid Earth, 117(B5), B05408. https://doi.org/10.1029/2011JB008849 doi: 10.1029/2011JB008849.

Zhou, X., Cambiotti, G., Sun, W., and Sabadini, R. (2014). The coseismic slip distribution of a shallow subduction fault constrained by prior information: the example of 2011 Tohoku (Mw 9.0) megathrust earthquake. Geophys. J. Int., 199(2), 981–995. https://doi.org/10.1093/gji/ggu310 doi: 10.1093/gji/ggu310.

[1]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[2]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[3]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[4]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini