Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, X., Zhou, C., Xu, T., Honary, F., Rietveld, M., and Frolov, V. (2019). Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association. Earth Planet. Phys., 3(5), 391–399.doi: 10.26464/epp2019042

2019, 3(5): 391-399. doi: 10.26464/epp2019042

SPACE PHYSICS: IONOSPHERIC PHYSICS

Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China

3. 

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

4. 

EISCAT Scientific Association, N-9027 Ramfjordmoen, Norway

5. 

Institute for Physics and Technology, UiT The Arctic University of Norway, N-9037, Tromsø, Norway

6. 

Radiophysical Research Institute, Nizhny Novgorod 603600, Russia

7. 

Kazan Federal University, Kazan 420008, Russia

Corresponding author: Xiang Wang, wangxiang.whu@whu.edu.cnChen Zhou, chenzhou@whu.edu.cn

Received Date: 2019-03-19
Web Publishing Date: 2019-09-01

An extraordinary (X-mode) electromagnetic wave, injected into the ionosphere by the ground-based heating facility at Tromsø, Norway, was utilized to modify the ionosphere on November 6, 2017. The high-power high-frequency transmitter facility located at Tromsø belongs to the European Incoherent Scatter Scientific Association. In the experiment, stimulated electromagnetic emission (SEE) spectra were observed. A narrow continuum occurred under cold-start conditions and showed an overshoot effect lasting several seconds. Cascading peaks occurred on both sides of the heating frequency only in the preconditioned ionosphere and also showed an overshoot effect. These SEE features are probably related to the ponderomotive process in the X-mode heating experiment and are helpful for understanding the physical mechanism that generated them during the X-mode heating experiment. The features observed in the X-mode heating experiments are novel and require further investigation.

Key words: artificial ionosphere modification; stimulated electromagnetic emissions; extraordinary electromagnetic wave; European Incoherent Scatter Scientific Association (EISCAT)

Armstrong, W. T., Massey, R., Argo, P., Carlos, R., Riggin, D., Cheung, P. Y., McCarrick, M., Stanley, J., and Wong, A. Y. (1990). Continuous measurement of stimulated electromagnetic emission spectra from HF excited ionospheric turbulence. Radio Sci., 25(6), 1283–1289. https://doi.org/10.1029/RS025i006p01283

Bernhardt, P. A., Selcher, C. A., and Kowtha, S. (2011). Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency. Geophys. Res. Lett., 38(19), L19107. https://doi.org/10.1029/2011GL049390

Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Rietveld, M. T., Ivanova, I. M., and Baddeley, L. J. (2011). Artificial small-scale field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave. Geophys. Res. Lett., 38(8), L08802. https://doi.org/10.1029/2011GL046724

Blagoveshchenskaya, N. F., Borisova, T. D., Kosch, M., Sergienko, T., Brändström, U., Yeoman, T. K., and Häggström, I. (2014). Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping. J. Geophys. Res.: Space Phys., 119(12), 10483–10498. https://doi.org/10.1002/2014JA020658

Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Häggström, I., and Kalishin, A. S. (2015). Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics. J. Atmos. Sol.-Terr. Phys., 135, 50–63. https://doi.org/10.1016/j.jastp.2015.10.009

Blagoveshchenskaya, N. F., Borisova, T. D., Kalishin, A. S., Yeoman, T. K., and Haggstrom, I. (2017a). First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region. J. Atmos. Terr. Phys., 155, 36–49. https://doi.org/10.1016/j.jastp.2017.02.003

Blagoveshchenskaya, N. F., Borisova, T. D., and Yeoman, T. K. (2017b). Comment on " Parametric instability induced by X-mode wave heating at EISCAT” by Wang et al. (2016). J. Geophys. Res.: Space Phys., 122(12), 12570-12585. https://doi.org/10.1002/2017JA023880222

Blagoveshchenskaya, N. F., Borisova, T. D., Kalishin, A. S., Kayatkin, V. N., Yeoman, T. K., & HäggströM, I. (2018). Comparison of the effects induced by the ordinary (O-mode) and extraordinary (X-mode) polarized powerful HF radio waves in the high-latitude ionospheric F region. Cosmic Research, 56(1), 11–25. https://doi.org/10.1134/S0010952518010045

Boiko, G. N., Erukhimov, L. M., Zyuzin, V. A., Komrakov, G. P., Metelev, S. A., Mityakov, N. A., Nikonov, V. A., Ryzhov, V. A., Tokarev, Y. V., and Frolov, V. L. (1985). Dynamic characteristics of stimulated radio emission from ionospheric plasma. Radiophys. Quantum Electron., 28(4), 259–268. https://doi.org/10.1007/BF01034596

Borisov, N., Honary, F., and Li, H. (2018). Excitation of plasma irregularities in the F region of the ionosphere by powerful HF radio waves of X-polarization. J. Geophys. Res.: Space Phys., 123(6), 5246–5260. https://doi.org/10.1029/2018JA025530

Cheung, P. Y., Mjølhus, E., DuBois, D. F., Pau, J., Zwi, H., and Wong, A. Y. (1997). Stimulated radiation from strong Langmuir turbulence in ionospheric modification. Phys. Rev. Lett., 79(7), 1273–1276. https://doi.org/10.1103/PhysRevLett.79.1273

Fejer, J. A., and Leer, E. (1972). Excitation of parametric instabilities by radio waves in the ionosphere. Radio Sci., 7(4), 481–491. https://doi.org/10.1029/RS007i004p00481

Frolov, V. L., Komrakov, G. P., Sergeev, E. N., Thidé, B., Waldenvik, M., and Veszelei, E. (1997). Results of the experimental study of narrow continuum features in stimulated ionospheric emission spectra. Radiophys. Quantum Electron., 40(9), 731–744. https://doi.org/10.1007/BF02676524

Frolov, V. L., Kagan, L. M., and Sergeev, E. N. (1999). Review of features of stimulated electromagnetic emission (SEE): Recent results obtained at the " Sura” heating facility. Radiophys. Quantum Electron., 42(7), 557–561. https://doi.org/10.1007/BF02677561

Frolov, V. L., Sergeev, E. N., Ermakova, E. N., Komrakov, G. P., and Stubbe, P. (2001). Spectral features of stimulated electromagnetic emission, measured in the 4.3-9.5 MHz pump wave frequency range. Geophys. Res. Lett., 28(16), 3103–3106. https://doi.org/10.1029/2001GL013251

Frolov, V. L., Sergeev, E. N., Komrakov, G. P., Stubbe, P., Thidé, B., Waldenvik, M., Veszelei, E., and Leyser, T. B. (2004). Ponderomotive narrow continuum (NCp) component in stimulated electromagnetic emission spectra. J. Geophys. Res.: Space Phys., 109(A7), A07304. https://doi.org/10.1029/2001JA005063

Frolov, V. L., Bolotin, I. A., Komrakov, G. P., Pershin, A. V., Vertogradov, G. G., Vertogradov, V. G., Kunitsyn, V. E., Padokhin, A. M., Kurbatov, G. A., Akchurin, A. D. and Zykov, E. Y. (2014). Generation of artificial ionospheric irregularities in the midlatitude ionosphere modified by high-power high-frequency X-mode radio waves. Radiophysics and Quantum Electronics, 57(6), 393–416. https://doi.org/10.1007/s11141-014-9523-8

Fu, H. Y., Scales, W. A., Bernhardt, P. A., Briczinski, S. J., Kosch, M. J., Senior, A., Rietveld, M. T., Yeoman, T. K., and Ruohoniemi, J. M. (2015). Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT. Ann. Geophys., 33(8), 983–990. https://doi.org/10.5194/angeo-33-983-2015

Grach, S. M., and Trakhtengerts, V. Y. (1975). Parametric excitation of ionospheric irregularities extended along the magnetic field. Radiophys. Quantum Electron., 18(9), 951–957. https://doi.org/10.1007/BF01038190

Gurevich, A. V., Carlson, H. C., Medvedev, Y. V., and Zybin, K. P. (2004). Langmuir turbulence in ionospheric plasma. Plasma Phys. Rep., 30(12), 995–1005. https://doi.org/10.1134/1.1839953

Kelley, M. C., Arce, T. L., Salowey, J., Sulzer, M. P., Armstrong, W. T., Carter, M., and Duncan, L. M. (1995). Density depletions at the 10-m scale induced by the Arecibo heater. J. Geophys. Res.: Space Phys., 100(A9), 17367–17376. https://doi.org/10.1029/95JA00063

Kosch, M. J., Pedersen, T. R., Rietveld, M. T., Gustavsson, B., Grach, S. M., and Hagfors, T. (2007). Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: An observational review. Adv. Space Res., 40(3), 365–376. https://doi.org/10.1016/j.asr.2007.02.061

Kuo, S. P. (2015). Ionospheric modifications in high frequency heating experiments. Phys. Plasmas, 22(1), 012901. https://doi.org/10.1063/1.4905519

Lehtinen, M. S., and Huuskonen, A. (1996). General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys., 58(1-4), 435–452. https://doi.org/10.1016/0021-9169(95)00047-X

Leyser, T. B., Thidé, B., Derblom, H., Hedberg, Å., Lundborg, B., Stubbe, P., and Kopka, H. (1990). Dependence of stimulated electromagnetic emission on the ionosphere and pump wave. J. Geophys. Res.: Space Phys., 95(A10), 17233–17244. https://doi.org/10.1029/JA095iA10p17233

Leyser, T. B., Thidé, B., Waldenvik, M., Goodman, S., Frolov, V. L., Grach, S. M., Karashtin, A. N., Komrakov, G. P., and Kotik, D. S. (1993). Spectral structure of stimulated electromagnetic emissions between electron cyclotron harmonics. J. Geophys. Res.: Space Phys., 98(A10), 17597–17606. https://doi.org/10.1029/93JA01387

Leyser, T. B. (2001). Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma. Space Sci. Rev., 98(3-4), 223–228. https://doi.org/10.1023/A:1013875603938

Lobachevsky, L. A., Gruzdev, Y. V., Kim, V. Y., Mikhaylova, G. A., Panchenko, V. A., Polimatidi, V. P., Puchkov, V. A., Vaskov, V. V., Stubbe, P., and Kopka, H. (1992). Observations of ionospheric modification by the Tromsø heating facility with the mobile diagnostic equipment of IZMIRAN. J. Atmos. Terr. Phys., 54(1), 75–85. https://doi.org/10.1016/0021-9169(92)90086-Z

Rietveld, M. T., Kohl, H., Kopka, H., and Stubbe, P. (1993). Introduction to ionospheric heating at Tromsø-I. Experimental overview. J. Atmos. Terr. Phys., 55(4-5), 577–599. https://doi.org/10.1016/0021-9169(93)90007-L

Rietveld, M. T., Senior, A., Markkanen, J., and Westman, A. (2016). New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci., 51(9), 1533–1546. https://doi.org/10.1002/2016RS006093

Robinson, T. R. (1989). The heating of the high lattitude ionosphere by high power radio waves. Phys. Rep., 179(2-3), 79–209. https://doi.org/10.1016/0370-1573(89)90005-7

Sergeev, E. N., Frolov, V. L., Grach, S. M., and Kotov, P. V. (2006). On the morphology of stimulated electromagnetic emission spectra in a wide pump wave frequency range. Adv. Space Res., 38(11), 2518–2526. https://doi.org/10.1016/j.asr.2005.02.046

Sharma, R., Kumar, A., and Kumar, R. (1993). Excitations of ion-Bernstein waves in ionospheric modification experiment. Radio Sci., 28(6), 951–957. https://doi.org/10.1029/93RS01374

Stubbe, P., Kopka, H., Thidé, B., and Derblom, H. (1984). Stimulated electromagnetic emission: A new technique to study the parametric decay instability in the ionosphere. J. Geophys. Res.: Space Phys., 89(A9), 7523–7536. https://doi.org/10.1029/JA089iA09p07523

Stubbe, P., Kopka, H., Rietveld, M. T., Frey, A., Høeg, P., Kohl, H., Nielsen, E., Rose, G., LaHoz, C., … Holt, O. (1985). Ionospheric modification experiments with the Tromsø heating facility. J. Atmos. Terr. Phys., 47(12), 1151–1163. https://doi.org/10.1016/0021-9169(85)90085-6

Stubbe, P., Kohl, H., and Rietveld, M. T. (1992). Langmuir turbulence and ionospheric modification. J. Geophys. Res.: Space Phys., 97(A5), 6285–6297. https://doi.org/10.1029/91JA03047

Stubbe, P., Stocker, A. J., Honary, F., Robinson, T. R., and Jones, T. B. (1994). Stimulated electromagnetic emissions and anomalous HF wave absorption near electron gyroharmonics. J. Geophys. Res.: Space Phys., 99(A4), 6233–6246. https://doi.org/10.1029/94JA00023

Stubbe, P., and Hagfors, T. (1997). The Earth’s ionosphere: A wall-less plasma laboratory. Surv. Geophys., 18(1), 57–127. https://doi.org/10.1023/A:1006583101811

Thidé, B., Kopka, H., and Stubbe, P. (1982). Observations of stimulated scattering of a strong high-frequency radio wave in the ionosphere. Phys. Rev. Lett., 49(21), 1561–1564. https://doi.org/10.1103/PhysRevLett.49.1561

Thidé, B., Derblom, H., Hedberg, Å., Kopka, H., and Stubbe, P. (1983). Observations of stimulated electromagnetic emissions in ionospheric heating experiments. Radio Sci., 18(6), 851–859. https://doi.org/10.1029/RS018i006p00851

Thidé, B., Hedberg, Å., Fejer, J. A., and Sulzer, M. P. (1989). First observations of stimulated electromagnetic emission at Arecibo. Geophys. Res. Lett., 16(5), 369–372. https://doi.org/10.1029/GL016i005p00369

Thidé, B., Djuth, F. T., Leyser, T. B., ands Ierkic, H. M. (1995). Evolution of Langmuir turbulence and stimulated electromagnetic emissions excited with a 3-mHz pump wave at Arecibo. J. Geophys. Res.: Space Phys., 100(A12), 23887–23899. https://doi.org/10.1029/95JA01631

Vickers H. (2011). Radar observations of artificial ionospheric modification effects, effects [Ph. D. thesis]. Leicester University, Leicester, UK.222

Wang, X., Zhou, C., Liu, M. R., Honary, F., Ni, B. B., and Zhao, Z. Y. (2016). Parametric instability induced by X-mode wave heating at EISCAT. J. Geophys. Res.: Space Phys., 121(10), 10536–10548. https://doi.org/10.1002/2016JA023070

Wang, X., and Zhou, C. (2017). Aspect dependence of Langmuir parametric instability excitation observed by EISCAT. Geophys. Res. Lett., 44(18), 9124–9133. https://doi.org/10.1002/2017GL074743

Wang, X., Zhou, C., and Honary, F. (2018). Reply to Comment on the article " Parametric Instability Induced by X-mode Wave Heating at EISCAT” by Wang et al. (2016). J. Geophys. Res.: Space Phys., 123(9), 8051-8061. https://doi.org/10.1029/2018JA025808222

[1]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[2]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[3]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[4]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[5]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[6]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[7]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics. doi: 10.26464/epp2020009

[8]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[9]

Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

[10]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[11]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[12]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[13]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[14]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[15]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[16]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov