Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

2018, 2(4): 257-275. doi: 10.26464/epp2018025

SPACE PHYSICS

A brief review of equatorial ionization anomaly and ionospheric irregularities

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. 

College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Nanan Balan, balan.nanan@yahoo.com

Received Date: 2018-06-27
Web Publishing Date: 2018-07-01

Following a brief history and progress of ionospheric research, this paper presents a brief review of the recent developments in the understanding of two major phenomena in low and mid latitude ionosphere—the equatorial ionization anomaly (EIA) and involved equatorial plasma fountain (EPF) and ionospheric irregularities. Unlike the easy-to-understand misinterpretations, the EPF involves field perpendicularE×B plasma drift and field-aligned plasma diffusion acting together and plasma flowing in the direction of the resultant at all points along the field lines at all altitudes. The EIA is formed mainly from the removal of plasma from around the equator by the upward E×B drift creating the trough and consequently the crests with small accumulation of plasma at the crests when the crests are within ~±20° magnetic latitudes and no accumulation when they are beyond ~±25° magnetic latitudes. The strong EIA under magnetically active conditions arises from the simultaneous impulsive action of eastward prompt penetration electric field and equatorward neutral wind. Intense ionospheric irregularities develop in the post-sunset bottom-side equatorial ionosphere when it rises to high altitudes, and evolve nonlinearly into the topside. Pre-reversal enhancement (PRE) of the vertical upward E×B drift and its fluctuations amplified during PRE provide the driving force and seed, with neutral wind and gravity waves being the primary sources. At low solar activity especially in summer when fast varying PRE is absent, the slow varying gravity waves including large scale waves (LSW) seem to act as both driver and seed for weak irregularities. At mid latitudes, the irregularities are weak and associated with medium scale traveling ionospheric disturbances (MSTIDs). A low latitude minimum in the occurrence of the irregularities at March equinox predicted by theoretical models is identified. The minimum occurs on the poleward side of the EIA crest and shifts equatorward from ~25° magnetic latitudes at high solar activity to below 17° at low solar activity.

Key words: equatorial ionization anomaly; ionospheric irregularities

Aarons, J. (1991). The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms. Radio Sci., 26(4), 1131-1149. https://doi.org/10.1029/91RS00473

Aarons, J. (1993). The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci. Rev., 63(3-4), 209-243. https://doi.org/10.1007/BF00750769

Abdu, M. A., de Medeiros, R. T., Bittencourt, J. A., and Batista, I. S. (1983). Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere. J. Geophys. Res., 88(A1), 399-402. https://doi.org/10.1029/JA088iA01p00399

Abdu, M. A., de Paula, E. R., Batista, I. S., Reinisch, B. W., Matsuoka, M. T., Camargo, P. O., Veliz, O., Denardini, C. M., Sobral, J. H. A., … de Siqueira P. M. (2008). Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm. J. Geophys. Res., 113(A7), A07313. https://doi.org/10.1029/2007JA012844

Ajith, K. K., Ram, S. T., Yamamoto, M., Yokoyama, T., Gowtam, V. S., Otsuka, Y., Tsugawa, T., and Niranjan, K. (2015). Explicit characteristics of evolutionary-type plasma bubbles observed from Equatorial Atmosphere Radar during the low to moderate solar activity years 2010-2012. J. Geophys. Res. Space Phys., 120(2), 1371-1382. https://doi.org/10.1002/2014JA020878

Anderson, D. N. (1973). A theoretical study of the ionospheric F region equatorial anomaly-I. Theory. Planet. Space Sci., 21(3), 409-419. https://doi.org/10.1016/0032-0633(73)90040-8

Anderson, D. N., and Redmon, R. J. (2017). Forecasting scintillation activity and equatorial spread F. Space Weather, 15(3), 495-502. https://doi.org/10.1002/2016SW001554

Appleton, E., and Barnett, M. (1925). Local reflection of wireless waves from the upper atmosphere. Nature, 115(2888), 333-334. https://doi.org/10.1038/115333a0

Appleton, E. V. (1946). Two anomalies in the ionosphere. Nature, 157(3995), 691. https://doi.org/10.1038/157691a0

Aswathy, R. P., and Manju, G. (2018). Hindcasting of equatorial spread F using seasonal empirical models. J. Geophys. Res., 123(2), https://doi.org/10.1002/2017JA025036

Aveiro, H. C., Hysell, D. L., Park, J., and Lühr, H. (2011). Equatorial spread F-related currents: three-dimensional simulations and observations. Geophys. Res. Lett., 38(21), L21103. https://doi.org/10.1029/2011GL049586

Bailey, G. J., and Balan, N. (1996). A low latitude Ionosphere-plasmasphere model. In R. W. Schunk (Ed.), STEP Hand Book of Ionospheric Models (pp. 173). Logan: Utah State University.222

Balachandran Nair, R., Balan, N., Bailey, G. J., and Rao, P. B. (1992). Spectra of the ac electric fields in the post-sunset F-region at the magnetic equator. Planet. Space Sci., 40(5), 655-662. https://doi.org/10.1016/0032-0633(92)90006-A

Balan, N., Jayachandran, B., Balachandran Nair, R., Namboothiri, S. P., Bailey, G. J. and Rao, P. B. (1992). HF Doppler observations of vector plasma drifts in the evening F-region at the magnetic equator. J. Atoms. Terr. Phys., 54(11-12), 1545-1554. https://doi.org/10.1016/0021-9169(92)90162-E

Balan, N., and Bailey, G. J. (1995). Equatorial plasma fountain and its effects: possibility of an additional layer. J. Geophys. Res., 100(A11), 21421-21432. https://doi.org/10.1029/95JA01555

Balan, N, Bailey, G. J., Abdu, M. A., Oyama, K. I., Richards, P. G., MacDougall, J., and Batista, I. S. (1997). Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer. J. Geophys. Res., 102(A2), 2047-2056. https://doi.org/10.1029/95JA02639

Balan, N., Batista, I. S., Abdu, M. A., MacDougall, J., and Bailey, G. J. (1998). Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere. J. Geophys. Res., 103(A12), 29169-29181. https://doi.org/10.1029/98JA02823

Balan, N., Shiokawa, K., Otsuka, Y., Watanabe, S., and Bailey, G. J. (2009). Super plasma fountain and equatorial ionization anomaly during penetration electric field. J. Geophys. Res., 114(A3), A03310. https://doi.org/10.1029/2008JA013768

Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto M., and Bailey, G. J. (2010). A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophy. Res., 115(A2), A02304. https://doi.org/10.1029/2009JA014515

Balan, N., Yamamoto, M., Liu, J. Y., Otsuak, Y., Liu, H., and Lühr, H. (2011). New aspects of thermospheric and ionospheric storms revealed by CHAMP. J. Geophys. Res., 116(A7), A07305. https://doi.org/10.1029/2010JA016399

Balan, N., Otsuka, Y., Nishioka, M., Liu, J. Y., and Bailey, G. J. (2013). Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res., 118(5), 2660-2669. https://doi.org/10.1002/jgra.50275

Balan, N., Maruyama, T., Patra, A. K., and Narayanan, V. L. (2018). A minimum in the latitude variation of spread-F at March equinox. Prog. Earth Planet. Sci., 5, 27. https://doi.org/10.1186/s40645-018-0180-y

Balsley, B. B., Haerendel, G., and Greenwald, R. A. (1972). Equatorial spread F: Recent observations and a new interpretation. J. Geophys. Res., 77(28), 5625-5628. https://doi.org/10.1029/JA077i028p05625

Basu, S., and Basu, S. (1981). Equatorial scintillation-a review. J. Atmos. Terr. Phys., 43(5-6), 473-489. https://doi.org/10.1016/0021-9169(81)90110-0

Basu, S., Basu, S., MacKenzie, E., Bridgwood, C., Valladares, C. E., Groves, K. M., and Carrano, C. (2010). Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Sci., 45(5), RS5009. https://doi.org/10.1029/2009RS004343

Beynon, W. J. G. (1975). Marconi, radio waves, and the ionosphere. Radio Sci., 10(7), 657-664. https://doi.org/10.1029/RS010i007p00657

Bhattacharyya, A., Basu, S., Groves, K. M., Valladares, C. E., and Sheehan, R. (2001). Dynamics of equatorial F region irregularities from spaced receiver scintillation observations. Geophys. Res. Lett., 28(1), 119-122. https://doi.org/10.1029/2000GL012288

Blanc, M., and Richmond, A. D. (1980). The ionospheric disturbance dynamo. J. Geophys. Res., 85(A4), 1669-1686. https://doi.org/10.1029/JA085iA04p01669

Booker, H. G., and Wells, H. W. (1938). Scattering of radio waves by the F-region of the ionosphere. Terr. Magn. Atmos. Elec., 43(3), 249-256. https://doi.org/10.1029/TE043i003p00249

Booker, H. G. (1956). Turbulence in the ionosphere with applications to meteor-trails, radio-star scintillation, auroral radar echoes, and other phenomena. J. Gephys. Res., 61(4), 673-705. https://doi.org/10.1029/JZ061i004p00673

Bowman, G. G. (1990). A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr., 42(2), 109-138. https://doi.org/10.5636/jgg.42.109

Breit, G., and Tuve, M. A. (1925). A radio method of estimating the height of the conducting layer. Nature, 116(2914), 357. https://doi.org/10.1038/116357a0

Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., and Su, S. Y. (2004). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res., 109(A12), A12301. https://doi.org/10.1029/2004JA010583

Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc. Phys. Soc., 43(1), 26-45. https://doi.org/10.1088/0959-5309/43/1/305

Chen, Y. D., Liu, L. B., Le, H. J., Wan, W. X., and Zhang, H. (2016). Equatorial ionization anomaly in the low-latitude topside ionosphere: Local time evolution and longitudinal difference. J. Geophys. Res., 121(7), 7166-7182. https://doi.org/10.1002/2016JA022394

Dungey, J. W. (1956). Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys., 9(5-6), 304-310. https://doi.org/10.1016/0021-9169(56)90148-9

Egedal, J. (1947). The magnetic diurnal variation of the horizontal force near the magnetic equator. Terr. Magn. Atmos. Electr., 52(4), 449-451. https://doi.org/10.1029/TE052i004p00449

Emmert, J. T., Richmond, A. D., and Drob, D. P. (2010). A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. J. Geophys. Res., 115(A8), A08322. https://doi.org/10.1029/2010JA015326

Farley, D. T., Balsley, B. B., woodman, R. F., and McClure, L. P. (1970). Equatorial spread F: Implications of VHF radar observations. J. Geophys. Res., 75(34), 7199-7216. https://doi.org/10.1029/JA075i034p07199

Fejer, B. G., Farley, D. T., Woodman, R. F., and Calderon, C. (1979). Dependence of equatorial F region vertical drifts on season and solar cycle. J. Geophys. Res., 84(A10), 5792-5796. https://doi.org/10.1029/JA084iA10p05792

Fejer, B. G., de Paula, E. R., Gonzáles, S. A., and Woodman, R. F. (1991). Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res., 96(A8), 13901-13906. https://doi.org/10.1029/91JA01171

Fuller-Rowell, T. J., Codrescu, M. V., Moffett, R. J., and Quegan, S. (1994). Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res., 99(A3), 3893-3914. https://doi.org/10.1029/93JA02015

Fukao, S., Kelley, M. C., Shirakawa, T., Takami, T., Yamamoto, M., Tsuda, T., and Kato, S. (1991). Turbulent upwelling of the mid-latitude ionosphere: 1. Observational results by the MU radar. J. Geophys. Res., 96(A3), 3725-3746. https://doi.org/10.1029/90JA02253

Graham, G. (1724-1725). An account of observations made of the variation of the horizontal needle at London, in the latter part of the year 1722, and beginning of 1723. By Mr. George Graham, Watchmaker, F. R. S. Philos. Trans., 33, 96-107.222

Hanson, W. B., and Moffett, R. J. (1966). Ionization transport effects in the equatorial F region. J. Geophys. Res., 71(23), 5559-5572. https://doi.org/10.1029/JZ071i023p05559

Haerendel, G. (1972). Rayleigh-Taylor instability as cause of equatorial spread-F. Trans. Am. Geophys. Union, 53(11), 1082.

Hamza, A. M. (1999). Perkins instability revisited. J. Geophys. Res., 104(A10), 22567-22575. https://doi.org/10.1029/1999JA900307

Heaviside, O. (1902). Telegraph Theory. 10th ed. Chicago: Encyclopedia Britannica.222

Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Fraser, G. J., Tsuda, T., Vial, F., and Vincent, R. (1996). Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys., 58(3), 1421-1447. https://doi.org/10.1016/0021-9169(95)00122-0

Heelis, R. A., Kendall, P. C., Moffett, R. J., Windle, D. W., and Rishbeth, H. (1974). Electrical coupling of the E- and F-regions and its effects on F-region drifts and winds. Planet. Space Sci., 22(5), 743-756. https://doi.org/10.1016/0032-0633(74)90144-5

Huang, C. S., and Kelley, M. C. (1996). Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of Rayleigh-Taylor instability. J. Geophys. Res., 101(A1), 293-302. https://doi.org/10.1029/95JA02210

Huang, C. M., Chen, M. Q., and Liu, J. Y. (2010). Ionospheric positive storm phases at the magnetic equator close to sunset. J. Geophys. Res., 115(A7), A07315. https://doi.org/10.1029/2009JA014936

Huba, J. D., Joice, G., Sazykin, S., Wolf, R., and Spiro, R. (2005). Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys. Res. Lett., 32(23), L23101. https://doi.org/10.1029/2005GL024162

Huba, J. D., Joyce, G., and Krall, J. (2008). Three-dimensional equatorial spread F modeling. Geophys. Res. Lett., 35(10), L10102. https://doi.org/10.1029/2008GL033509

Hysell, D. L., Larsen, M. F., Swenson, C. M., Barjatya, A., Wheeler, T. F., Sarango, M. F., Woodman, R. F., and Chau, J. L. (2005). Onset conditions for equatorial spread F determined during EQUIS II. Geophys. Res. Lett., 32(24), L24104. https://doi.org/10.1029/2005GL024743

Hysell, D. L., Larsen, M. F., Swenson, C. M., and Wheeler, T. F. (2006). Shear flow effects at the onset of equatorial spread F. J. Geophys. Res., 111(A11), A11317. https://doi.org/10.1029/2006JA011963

Hysell, D. L., Jafari D. L., Milla R., Meriwether M. A., J. W. (2014). Data-driven numerical simulations of equatorial spread F in the Peruvian sector. J. Geophys. Res. Space Phys., 119, 3815-3827. doi:10.1002/2014JA019889

Jayachandran, B., Balan, N., Namboothiri, S. P., and Rao, P. B. (1987). HF Doppler observations of vertical plasma drifts in the evening F region at the equator. J. Geophys. Res., 92(A10), 11253-11256. https://doi.org/10.1029/JA092iA10p11253

Jayachandran, B., Balan, N., Rao, P. B., Sastri, J. H., and Bailey, G. J. (1993). HF Doppler and ionosonde observations on the onset conditions of equatorial spread F. J. Geophys. Res., 98(A8), 13741-13750. https://doi.org/10.1029/93JA00302

Kelley, M. C., Larsen, M. F., LaHoz, C., and McClure, J. P. (1981). Gravity wave initiation of equatorial spread F: a case study. J. Geophys. Res., 86(A11), 9087-9100. https://doi.org/10.1029/JA086iA11p09087

Kelley, M. C., and Fukao, S. (1991). Turbulent upwelling of the mid-latitude ionosphere, II: theoretical framework. J. Geophys. Res., 96, 3747-3753.

Kelley, M. C., Vlasov, M. N., Foster, J. C., and Coster, A. J. (2004). A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys. Res. Lett., 31(19), L19809. https://doi.org/10.1029/2004GL020875

Kelley, M. C., Makela, J. J., de La Beaujardière, O., and Retterer, J. (2011). Convective ionospheric storms: a review. Rev. Geophys., 49(2), RG2003. https://doi.org/10.1029/2010RG000340

Kelley, M. C., and Dao, E. V. (2017). Evidence for gravity wave seeding of convective ionospheric storms possibly initiated by thunderstorms. J. Geophys. Res. Space Phys., 122(5), 4046-4052. https://doi.org/10.1002/2017JA024707

Kennelly, A. E. (1902). On the elevation of the electrically-conducting strata of the Earth’s atmosphere. Electr. World Engineer, 39, 473.

Kikuchi, T., Araki, T., Maeda, H., and Maekawa, K. (1978). Transmission of polar electric fields to the equator. Nature, 273(5664), 650-651. https://doi.org/10.1038/273650a0

Kudeki, E., and Bhattacharyya, S. (1999). Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F. J. Geophys. Res., 104(A12), 28163-28170. https://doi.org/10.1029/1998JA900111

Kudeki, E., Akgiray, A., Milla, M. A., Chau, J. L., and Hysell, D. L. (2007). Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J. Atmos. Solar Terr. Phys., 69(17-18), 2416-2427. https://doi.org/10.1016/j.jastp.2007.04.012

Li, G. Z., Ning, B. Q., and Yuan, H. (2007). Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region. Earth Planet. Space, 59(4), 279-285. https://doi.org/10.1186/BF03353105

Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C., and Su, S. Y. (2005). Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res., 110(A12), A12312. https://doi.org/10.1029/2005JA011304

Liu, H., and Lühr, H. (2005). Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res., 110(A9), A09S29. https://doi.org/10.1029/2004JA010908

Liu, L. B., He, M. S., Yue, X. A., Ning, B. Q., and Wan, W. X. (2010). Ionosphere around equinoxes during low solar activity. J. Geophys. Res., 115(A9), A09307. https://doi.org/10.1029/2010JA015318

Lu, G., Goncharenko, L. P., Nicolls, M. J., Maute, A. I., Coster, A. J., and Paxton, L. J. (2012). Ionospheric and thermospheric variations associated with prompt penetration electric fields. J. Geophys. Res., 117(A8), A08312. https://doi.org/10.1029/2012JA017769

Madhav Haridas, M. K., Manju, G., and Pant, T. K. (2013). First observational evidence of the modulation of the threshold height h’Fc for the occurrence of equatorial spread F by neutral composition changes. J. Geophys. Res. Space Phys., 118(6), 3540-3545, https://doi.org/10.1002/jgra.50331

Makela, J. J., and Otsuka, Y. (2012). Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1-4), 419-440. https://doi.org/10.1007/s11214-011-9816-6

Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U., and Skoug, R. (2005). Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 " Halloween Storms”. Geophys. Res. Lett., 32(12), L12S02. https://doi.org/10.1029/2004GL021467

Maruyama, T. (1990). E×B instability in the F-region at low-to midlatitudes. Planet. Space Sci., 38(2), 273-285. https://doi.org/10.1016/0032-0633(90)90092-5

Martyn, D. F. (1955). Theory of height and ionization density changes at the maximum of a Chapman-like region, taking account of ion production, decay, diffusion, and total drift. In Proceedings, Cambridge Conference (pp. 254). London: Physical Society.222

Mitra, S. K. (1946). Geomagnetic control of region F2 of the ionosphere. Nature, 158(4019), 668-669. https://doi.org/10.1038/158668a0

Moffett, R. J. (1979). The equatorial anomaly in the electron distribution of the terrestrial F-region. Fund. Cosmic Phys., 4, 313.

Moffett, R. J., and Hanson, W. B. (1965). Effect of ionization transport on the equatorial F-region. Nature, 206(4985), 705-706. https://doi.org/10.1038/206705a0

Namba, S., and Maeda, K. I. (1939). Radio Wave Propagation. Tokyo: Corona.222

Namboothiri, S. P., Balan, N., and Rao, P. B. (1989). Vertical plasma drifts in the F region at the magnetic equator. J. Geophys. Res., 94(A9), 12055-12060. https://doi.org/10.1029/JA094iA09p12055

Narayanan, V. L., Shiokawa, K., Otsuka, Y., and Saito, S. (2014). Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low-latitude limit. J. Geophys. Res., 119(11), 9268-9282. https://doi.org/10.1002/2014JA020368

Oyama, K. I., Abdu, M. A., Balan, N., Bailey, G. J., Watanabe, S., Takahashi, T., de Paula, E. R., Batista, I. S., Isoda, F., and Oya, H. (1997). High electron temperature associated with the prereversal enhancement in the equatorial ionosphere. J. Geophys. Res., 102(A1), 417-424. https://doi.org/10.1029/96JA02705

Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2002). Geomagnetic conjugate observations of equatorial airglow depletions. Geohys. Res. Let., 29(15), 43-1-43-4. https://doi.org/10.1029/2002GL015347

Otsuka, Y., Shiokawa, K., Nishioka, M., and Effendy, V. (2012). VHF radar observations of post-midnight F-region field-aligned irregularities over Indonesia during solar minimum. Indian J. Radio Space Phys., 41(2), 199-207.

Patra, A. K., Taori, A., Chaitanya, P. P., and Sripathi, S. (2013). Direct detection of wavelike spatial structure at the bottom of the F region and its role on the formation of equatorial plasma bubble. J. Geophys. Res., 118(3), 1196-1202. https://doi.org/10.1002/jgra.50148

Perkins, F. (1973). Spread F and ionospheric currents. J. Geophys. Res., 78(1), 218-226. https://doi.org/10.1029/JA078i001p00218

Picone, J. M., Hedin, A. E., Drob, D., and Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res., 107(A12), 1468. https://doi.org/10.1029/2002JA009430

Prakash, S. (1999). Production of electric field perturbations by gravity wave winds in the E region suitable for initiating equatorial spread F. J. Geophys. Res., 104(A5), 10051-10069. https://doi.org/10.1029/1999JA900028

Prolss, G. W. (1995). Ionospheric F-region storms. In H. Volland (Ed.), Handbook of Atmospheric Electrodynamics (pp. 195–245). Boca Raton: CRC Press.222

Raghavarao, R., Wharton, L. E., Spencer, N. W., Mayr, H. G., and Brace, L. H. (1991). An equatorial temperature and wind anomaly (ETWA). Geophys. Res. Letts., 18(7), 1193-1196. https://doi.org/10.1029/91GL01561

Rajaram, G. (1977). Structure of the equatorial F-region, topside and bottomside - A review. J. Atmos. Terr. Phys., 39(9-10), 1125-1144. https://doi.org/10.1016/0021-9169(77)90021-6

Ratcliffe, J. A. (1972). Introduction to the Ionosphere and Magnetosphere. Cambridge: Cambridge University Press.222

Rastogi, R. G. (1977). Geomagnetic storms and electric fields in the equatorial ionosphere. Nature, 268(5619), 422-424. https://doi.org/10.1038/268422a0

Rastogi, R. G., Mullen, J. P., and MacKenzie, E. (1981). Effect of geomagnetic activity on equatorial radio VHF scintillations and spread F. J. Geophys. Res., 86(A5), 3661-3664. https://doi.org/10.1029/JA086iA05p03661

Rishbeth, H., Lyon, A. J., and Peart, M. (1963). Diffusion in the equatorial F layer. J. Geophys. Res., 68(9), 2559-2569. https://doi.org/10.1029/JZ068i009p02559

Rishbeth, H. (1971). The F-layer dynamo. Planet. Space Sci., 19(2), 263-267. https://doi.org/10.1016/0032-0633(71)90205-4

Sahai, Y., Becker-Guedes, F., Fagundes, P. R., de Abreu, A. J., de Jesus, R., Pillat, V. G., Abalde, J. R., Martinis, C. R., Brunini, C., … Otsuka Y. (2009). Observations of the F-region ionospheric irregularities in the South American sector during the October 2003 " Halloween Storms”. Ann. Geophys., 27(12), 4463-4477. https://doi.org/10.5194/angeo-27-4463-2009

Scannapieco, A. J., and Ossakow, S. L. (1976). Nonlinear equatorial spread F. Geophys. Res. Lett., 3(8), 451-454. https://doi.org/10.1029/GL003i008p00451

Sekar, R., Suhasini, R., and Raghavarao, R. (1995). Evolution of plasma bubbles in the equatorial F region with different seeding conditions. Geophys. Res. Lett., 22(8), 885-888. https://doi.org/10.1029/95GL00813

Shiokawa, K., Otsuka, Y., Ejiri, M. K., Sahai, Y., Kadota, T., Ihara, C., Ogawa, T., Igarashi, K., Miyazaki, S., and Saito, A. (2002). Imaging observations of the equatorward limit of midlatitude traveling ionospheric disturbances. Earth Planet. Space, 54(1), 57-62. https://doi.org/10.1186/BF03352421

Souza, J. R., Asevedo Jr, W. D., dos Santos, P. C. P., Petry, A., Bailey, G. J., Batista, I. S., and Abdu, M. A. (2013). Longitudinal variation of the equatorial ionosphere: Modeling and experimental results. Adv. Space Res., 51(4), 654-660. https://doi.org/10.1016/j.asr.2012.01.023

Sreeja, V., Ravindran, S., Pant, T. K., Devasia, C. V., and Paxton, L. J. (2009). Equatorial and low-latitude ionosphere-thermosphere system response to the space weather event of August 2005. J. Geophys. Res., 114(A12), A12307. https://doi.org/10.1029/2009JA014491

Stening, R. J. (1992). Modelling the low latitude F region. J. Atmos. Terr. Phys., 54(11-12), 1387-1412. https://doi.org/10.1016/0021-9169(92)90147-D

Stolle, C., Michaelis, I., and Rauberg, J. (2016). The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites. Earth Planet. Space, 68, 110. https://doi.org/10.1186/s40623-016-0494-1

Su, S. Y., Liu, C. H., Ho, H. H., and Chao, C. K. (2006). Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude regions. J. Geophys. Res., 111(A6), A06305. https://doi.org/10.1029/2005JA011330

Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res., 101(A12), 26875-26891. https://doi.org/10.1029/96JA00682

Taylor, J. E. (1902-1903). Characteristics of electric earth-current disturbances, and their origin. Proc. R. Soc. London, 71, 225-227.

Thampi, S. V., Ravindran, E., Pant, T. K., Devasia, C. V., Sreelatha, P., and Sridharan, R. (2006). Deterministic prediction of post-sunset ESF based on the strength and asymmetry of EIA from ground based TEC measurements: Preliminary results. Geophys. Res. Lett., 33(13), L13103. https://doi.org/10.1029/2006GL026376

Tsunoda, R. T. (1985). Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res., 90, 447-456.

Tsunoda, R. T. (2006). On the coupling of layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res., 111(A11), A11304. https://doi.org/10.1029/2006JA011630

Tsunoda, R. T., and Cosgrove, R. B. (2001). Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 28(22), 4171-4174. https://doi.org/10.1029/2001GL013245

Tsunoda, R. T., Bubenik, D. M., Thampi, S. V., and Yamamoto, M. (2010). On large-scale wave structure and equatorial spread F without a post-sunset rise of the F layer. Geophys. Res. Lett., 37(7), L07105. https://doi.org/10.1029/2009GL042357

Tulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., and Ravindran, S. (2008). Local time dependant response of postsunset ESF during geomagnetic storms. J. Geophys. Res., 113(A7), A07310. https://doi.org/10.1029/2007JA012922

Tulasi Ram, S., Yamamoto, M., Tsunoda, R. T., Chau, H. D., Hoang, T. L., Damtie, B., Wassaie, M., Yatini, C. Y., Manik, T., and Tsugawa, T. (2014). Characteristics of large-scale wave structure observed from African and Southeast Asian longitudinal sectors. J. Geophys. Res., 119(3), 2288-2297. https://doi.org/10.1002/2013JA019712

Viggiano, A. A., and Arnold, F. (1995). Ion chemistry and composition of the atmosphere. In H. Volland (Ed.), Handbook of Atmospheric Electrodynamics. Boca Raton: CRC Press.222

Whalen, J. A. (2002). Dependence of equatorial bubbles and bottomside spread F on season, magnetic activity, and E×B drift velocity during solar maximum. J. Geophys. Res., 107(A2), SIA 3-1-SIA 3-9. https://doi.org/10.1029/2001JA000039

Woodman, R. F., and La Hoz, C. (1976). Radar observations of F region equatorial irregularities. J. Geophys. Res., 81(31), 5447-5466. https://doi.org/10.1029/JA081i031p05447

Woodman, R. F. (2009). Spread F—an old equatorial aeronomy problem finally resolved?. Ann. Geophys., 27(5), 1915-1934. https://doi.org/10.5194/angeo-27-1915-2009

Weber, E. J., Buchau, J., Eather, R. H., and Mende, S. B. (1978). North-south aligned equatorial airglow depletions. J. Geophys. Res., 83(A2), 712-716. https://doi.org/10.1029/JA083iA02p00712

Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res. Space Phys., 119(12), 10474-10482. https://doi.org/10.1002/2014JA020708

Yokoyama, T., and Stolle, C. (2017). Low and midlatitude ionospheric plasma density irregularities and their effects on geomagnetic field. Space Sci. Rev., 206(1-4), 495-519. https://doi.org/10.1007/s11214-016-0295-7

Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982). Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. J. Geophys. Res., 87(A1), 151-166. https://doi.org/10.1029/JA087iA01p00151

[1]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[2]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[3]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[4]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A brief review of equatorial ionization anomaly and ionospheric irregularities

Nanan Balan, LiBo Liu, HuiJun Le