Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Ting Cao, Qi He, ZhuQing Xue, 2018: Petrogenesis of basaltic shergottite NWA 8656, Earth and Planetary Physics, 2, 384-397. doi: 10.26464/epp2018036

2018, 2(5): 384-397. doi: 10.26464/epp2018036


Petrogenesis of basaltic shergottite NWA 8656

Planetary Science Institute, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

Corresponding author: Qi He,

Received Date: 2018-08-05
Web Publishing Date: 2018-09-01

Most basaltic shergottites are too Mg-rich to represent parent melt compositions because they contain some cumulus pyroxenes. However, basaltic shergottite Northwest Africa (NWA) 8656 with subophitic texture can be used as the parent melt composition in petrogenetic studies because it contains no or rare cumulus pyroxenes. Its pyroxene cores (Mg# 66-68, the most magnesian) are in equilibrium with the bulk rock composition based on major (Fe-Mg) and trace elements (REE—rare earth elements). The patchy zoning of pyroxenes has been interpreted as reflecting a two-stage crystallization history: 1) crystallization of Mg-rich pyroxene cores at depth (50 km, the base of Martian crust), 2) crystallization of Fe-rich pyroxene rims at the shallow depth near the Martian surface with a fast cooling history. The crystallization of Fe-rich pyroxenes and the existence of different symplectites indicate that NWA 8656 underwent eruption. The oxygen fugacity of NWA 8656 (QFM –0.9±0.5) suggests an oxidized condition at the late-stage crystallization process, and the CI-normalized REE patterns of different minerals show enrichment in LREE, compared to that of depleted shergottites. Both of these observations suggest a relatively ITE (incompatible trace elements)-enriched signature of NWA 8656, similar to those of other enriched shergottites. The REE compositions of augite core and rim and plagioclase can be successfully reproduced by progressive crystallization without exogenous components, which indicates a closed magmatic system for NWA 8656. Consequently, we conclude that the ITE-enriched signature of NWA 8656 is inherited from an enriched mantle source rather than caused by crustal assimilation. Moreover, partial melting of depleted Martian mantle could not directly yield magmas that have geochemical characteristics similar to enriched shergottite parent magmas, so the enriched and depleted shergottites are derived from distinct mantle sources, and the mantle source of enriched shergottites would be expected to contain ilmenite.

Key words: basaltic shergottites; patchy zoning; ITE-enriched; closed-system; distinct mantle sources

Anand, M., Taylor, L. A., Floss, C., Neal, C. R., Terada, K., and Tanikawa, S. (2006). Petrology and geochemistry of LaPaz Icefield 02205: A new unique low-Ti mare-basalt meteorite. Geochim. Cosmochim. Acta, 70(1), 246–264.

Aramovich, C. J., Herd, C. D. K., and Papike, J. J. (2002). Symplectites derived from metastable phases in Martian basaltic meteorites. Am. Miner, 87(10), 1351–1359.

Barrat, J. A., Gillet, P. H., Sautter, V., Jambon, A., Javoy, M., Göpel, C., Lesourd, M., Keller, F., and Petit, E. (2002). Petrology and chemistry of the basaltic shergottite North West Africa 480. Meteorit. Planet. Sci., 37(4), 487–499.

Bédard, J. H. (2010). Parameterization of The Fe-Mg exchange coefficient (Kd) between clinopyroxene and silicate melts. Chem. Geol., 274(3–4), 169–176.

Blichert-Tolt, J., Gleason, J. D., Télouk, P., and Albarède, F. (1999). The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle-crust system. Earth Planet. Sci. Lett., 173(1–2), 25–39.

Borg, L. E., Nyquist, L. E., Taylor, L. A., Wiesmann, H., and Shih, C. Y. (1997). Constraints on Martian differentiation processes from Rb–Sr and Sm–Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta, 61(22), 4915–4931.

Borg, L. E., and Draper, D. A. (2003). A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteorit. Planet. Sci., 38(12), 1713–1731.

Bouvier, A., Blichert-Tolt, J., Vervoort, J. D., Gillet, P., and Albarède, F. (2008a). The case for old basaltic shergottites. Earth Planet. Sci. Lett., 266(1–2), 105–124.

Bouvier, A., Vervoort, J. D., and Patchett, P. J. (2008b). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett., 273(1–2), 48–57.

Brandon, A. D., Puchtel, I. S., Walker, R. J., Day, J. M. D., Irving, A. J., and Taylor, L. A. (2012). Evolution of the Martian mantle inferred from the 187Re-187Os isotope and highly siderophile element abundance systematics of Shergottite meteorites. Geochim. Cosmochim. Acta, 76, 206–235.

Bridges, J. C., and Warren, P. H. (2006). The SNC meteorites: basaltic igneous processes on Mars. J. Geol. Soc., 163(2), 229–251.

Chen, L., Liu, Y. S., Hu, Z. C., Gao, S., Zong, K. Q., and Chen, H. H. (2011). Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chem. Geol., 284(3–4), 283–295.

Crozaz, G., Floss, C., and Wadhwa, M. (2003). Chemical alteration and REE mobilization in meteorites from hot and cold deserts. Geochim. Cosmochim. Acta, 67(24), 4727–4741.

Debaille, V., Brandon, A. D., Yin, Q. Z., and Jacobsen, B. (2007). Coupled 142Nd -143Nd evidence for a protracted magma ocean in Mars. Nature, 450(7169), 525–528.

Debaille, V., Yin, Q. Z., Brandon, A. D., and Jacobsen, B. (2008). Martian Mantle mineralogy investigated by the 176Lu-176Hf and 147Sm-143Nd systematics of shergottites. Earth Planet. Sci. Lett., 269(1–2), 186–199.

Ferdous, J., Brandon, A. D., Peslier, A. H., and Pirotte, Z. (2017). Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856. Geochim. Cosmochim. Acta, 211, 280–306.

Filiberto, J., Musselwhite, D. S., Gross, J., Burgess, K., Le, L., and Treiman, A. H. (2010). Experimental petrology, crystallization history, and parental magma characteristics of olivine-phyric shergottite NWA 1068: Implications for the petrogenesis of ‘‘enriched” olivine-phyric shergottites. Meteorit. Planet. Sci., 45(8), 1258–1270.

Filiberto, J., Gross, J., Trela, J., and Ferre, E. C. (2014). Gabbroic shergottite Northwest Africa 6963: an intrusive sample of Mars. Am. Mineral., 99(4), 601–606.

Fritz, J., Artemieva, N., and Greshake, A. (2005). Ejection of Martian meteorites. Meteorit. Planet. Sci., 40(9–10), 1393–1411.

Ghiorso, M. S., and Sack, O. (1991). Fe-Ti oxide geothermometry: Thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib. Mineral. Petrol., 108(4), 485–510.

Ghiorso, M. S., and Evans, B. W. (2008). Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am. J. Sci., 308(9), 957–1039.

Goodrich, C. A. (2002). Olivine-phyric Martian basalts: a new type of shergottite. Meteorit. Planet. Sci., 37(S12), B31–B34.

Goodrich, C. A. (2003). Petrogenesis of olivine-phyric shergottites Sayh Al Uhaymir 005 and elephant moraine A79001 lithology A. Geochim. Cosmochim. Acta, 67(19), 3735–3772.

He, Q., Xiao, L., Balta, J. B., Baziotis, I. P., Hsu, W., and Guan, Y. B. (2015). Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975. Meteorit. Planet. Sci., 50(12), 2024–2044.

Herd, C. D. K., Papike, J. J., and Brearley, A. J. (2001). Oxygen fugacity of Martian basalts from electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. Am. Miner., 86(9), 1015–1024.

Herd, C. D. K., Borg, L. E., Jones, J. H., and Papike, J. J. (2002). Oxygen fugacity and geochemical variations in the Martian basalts: Implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta, 66(11), 2025–2036.

Herd, C. D. K. (2006). Insights into the redox history of the NWA 1068/1110 Martian basalt from mineral equilibria and vanadium oxybarometry. Am. Miner., 91(10), 1616–1627.

Howarth, G. H., Udry, A., and Day, J. M. D. (2018). Petrogenesis of basaltic shergottite Northwest Africa 8657: Implications for fO2 correlations and element redistribution during shock melting in shergottites. Meteorit. Planet. Sci., 53(2), 249–267.

Hui, H. J., Peslier, A. H., Lapen, T. J., Shafer, J. T., Brandon, A. D., and Irving, A. J. (2011). Petrogenesis of basaltic shergottite Northwest Africa 5298: closed-system crystallization of an oxidized mafic melt. Meteorit. Planet. Sci., 46(9), 1313–1328.

Jones, J. H. (1986). A discussion of isotopic systematics and mineral zoning in the shergottites: Evidence for a 180 m.y. igneous crystallization age. Geochim. Cosmochim. Acta, 50(6), 969–977.

Kring, D. A., Gleason, J. D., Swindle, T. D., Nishiizumi, K., Caffee, M. W., Hill, D. H., Jull, A. J. T., and Boynton, W. V. (2003). Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201. Meteorit. Planet. Sci., 38(12), 1833–1848.

Lentz, R. C. F., and McSween, Jr. H. Y. (2000). Crystallization of the basaltic shergottites: Insights from crystal size distribution (CSD) analysis of pyroxenes. Meteorit. Planet. Sci., 35(5), 919–927.

Lindsley, D. H., and Burnham, C. W. (1970). Pyroxferroite: Stability and X-ray crystallography of synthetic Ca0.15Fe0.85SiO3 pyroxenoid. Science, 168(3929), 364–367.

Lindsley, D. H., and Andersen, D. J. (1983). A two-pyroxene thermometer. J. Geophys. Res., 88(S02), A887–A906.

Lindsley, D. H. (1983). Pyroxene thermometry. Am. Min., 68(5–6), 477–493

Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G., and Chen, H. H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol., 257(1–2), 34–43.

Lodders, K. (1998). A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteorit. Planet. Sci., 33(S4), A183–A190.

Lu, F., Taylor, L. A., and Jin, Y. (1989). Basalts and gabbros from Mare Crisium-Evidence for extreme fractional crystallization. In Proceedings of the 19th Lunar and Planetary Science Conference (pp. 199–207). Houston, TX: Cambridge University Press/Lunar and Planetary Institute.222

Lundberg, L. L., Crozaz, G., McKay, G., and Zinner, E. (1988). Rare earth element carriers in the Shergotty meteorite and implications for its chronology. Geochim. Cosmochim. Acta, 52(8), 2147–2163.

Lundberg, L. L., Crozaz, G., and McSween, H. Y. (1990). Rare earth elements in minerals of the ALHA77005 shergottite and implications for its parent magma and crystallization history. Geochim. Cosmochim. Acta, 54(9), 2535–2547.

McKay, G., Wagstaff, J., and Yang, S. R. (1986). Clinopyroxene REE distribution coefficients for shergottites: The REE content of the Shergotty melt. Geochim. Cosmochim. Acta, 50(6), 927–937.

McSween, Jr. H. Y. (1994). What we have learned about Mars from SNC meteorites. Meteoritics, 29(6), 757–779.

McSween, Jr. H. Y., Eisenhour, D. D., Taylor, L. A., Wadhwa, M., and Crozaz, G. (1996). QUE94201 shergottite: crystallization of a Martian basaltic magma. Geochim. Cosmochim. Acta, 60(22), 4563–4569.

McSween, H. Y., Treiman, A. H. (1998). Martian meteorites. Rev Mineral, 36, 6-1–6-53

Mikouchi, T., Miyamoto, M., and McKay, G. A. (1999). The role of undercooling in producing igneous zoning trends in pyroxenes and maskelynites among basaltic Martian meteorites. Earth Planet. Sci. Lett., 173(3), 235–256.

Nyquist, L. E., Bansal, B. M., Wiesmann, H., and Shih, C. Y. (1995). " Martians” young and old: Zagami and ALH 84001. In Proceedings of the 26th Lunar and Planetary Science Conference (pp. 1065–1066). Houston, TX: Cambridge University Press/Lunar and Planetary Institute.222

Nyquist, L. E., Bogard, D. D., Shih, C. Y., Greshake, A., Stöffler, D., and Eugster, O. (2001). Ages and geologic histories of Martian meteorites. Space Sci. Rev., 96(1–4), 105–164.

Papike, J. J., Karner, J. M., Shearer, C. K., and Burger, P. V. (2009). Silicate mineralogy of Martian meteorites. Geochim. Cosmochim. Acta, 73(24), 7443–7485.

Patzer, A., and McSween, Jr. H. Y. (2012). Ordinary (mesostasis) and not-so-ordinary (symplectites) late-stage assemblages in howardites. Meteorit. Planet. Sci., 47(9), 1475–1490.

Rost, D., Stephan, T., Greshake, A., Fritz, J., Weber, I., and Jessberger, E. K., Stöffler, D. (2009). A combined ToF- SIMS and EMP/SEM study of a three-phase symplectite in the Los Angeles basaltic shergottite. Meteorit. Planet. Sci., 44(8), 1225–1237.

Shafer, J. T., Brandon, A. D., Lapen, T. J., Righter, M., Peslier, A. H., and Beard, B. L. (2010). Trace element systematics and 147Sm-143Nd and 176Lu-176Hf ages of Larkman Nunatak 06319: closed-system fractional crystallization of an enriched shergottite magma. Geochim. Cosmochim. Acta, 74(24), 7307–7328.

Shearer, C. K., Aaron, P. M., Burger, P. V., Guan, Y., Bell, A. S., and Papike, J. J. (2013). Petrogenetic linkages among fO2, isotopic enrichments-depletions and crystallization history in Martian basalts. Evidence from the distribution of phosphorus in olivine megacrysts. Geochim. Cosmochim. Acta, 120, 17–38.

Shih, C. Y., Nyquist, L. E., Bogard, D. D., McKay, G. A., Wooden, J. L., Bansal, B. M., and Wiesmann, H. (1982). Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA77005: late magmatism on a geologically active planet. Geochim. Cosmochim. Acta, 46(11), 2323–2344.

Shih, C. Y., Nyquist, L. E., Wiesmann, H., and Barrat, J. A. (2003). Age and petrogenesis of picritic shergottite NWA 1068: Sm-Nd and Rb-Sr isotopic studies. In Proceedings of the 34th Annual Lunar and Planetary Science Conference. Houston, TX: NASA Johnson Space Center.222

Shimoda, G., Ikeda, Y., Kita, N. T., Morishita, Y., and Imae, N. (2005). Two-stage plume melting: A possible mechanism for the origin of Martian magmatism. Earth Planet. Sci. Lett., 235(3–4), 469–479.

Stöffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Gupta, P. R. S., Simon, S. B., Papike, J. J., and Beauchamp, R. H. (1986). Shock metamorphism and petrography of the Shergotty achondrite. Geochim. Cosmochim. Acta, 50(6), 889–903.

Stolper, E., and McSween, Jr. H. Y. (1979). Petrology and origin of the shergottite meteorites. Geochim. Cosmochim. Acta, 43(9), 1475–1498.

Sun, S. S., and McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunders and M. J. Norry (Eds.), Magmatism in the Ocean Basins (pp. 313–345). Geological Society, London, Special Publications.222

Symes, S. J. K., Borg, L. E., Shearer, C. K., and Irving, A. J. (2008). The age of the Martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites. Geochim. Cosmochim. Acta, 72(6), 1696–1710.

Taylor, L. A., Nazarov, M. A., Ivanova, M. A., Patchen, A., Clayton, R. N., and Mayeda, T. K. (2000). Petrology of the Dhofar 019 shergottite. Meteorit. Planet. Sci., 35(5), 155–159

Treiman, A. H. (1996). The perils of partition: Difficulties in retrieving magma compositions from chemically equilibrated basaltic meteorites. Geochim. Cosmochim. Acta, 60(1), 147–155.

Treiman, A. H., and Filiberto, J. (2015). Geochemical diversity of shergottite basalts: Mixing and fractionation, and their relation to Mars surface basalts. Meteorit. Planet. Sci., 50(4), 632–648.

Udry, A., Howarth, G. H., Lapen, T. J., and Righter, M. (2017). Petrogenesis of the NWA 7320 enriched Martian gabbroic shergottite: Insight into the Martian crust. Geochim. Cosmochim. Acta., 204, 1–18.

Usui, T., McSween, Jr. H. Y., and Floss, C. (2008). Petrogenesis of olivine-phyric shergottite Yamato 980459, revisited. Geochim. Cosmochim. Acta, 72(6), 1711–1730.

Wadhwa, M., McSween, Jr. H. Y., and Crozaz, G. (1994). Petrogenesis of shergottite meteorites inferred from minor and trace element microdistributions. Geochim. Cosmochim. Acta, 58(19), 4213–4229.

Wadhwa, M. (2001). Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science, 291(5508), 1527–1530.

Warren, P. H., Greenwood, J. P., and Rubin, A. E. (2004). Los Angeles: a tale of two stones. Meteorit. Planet. Sci., 39(1), 137–156.

Warren, P. H., and Bridges, J. C. (2005). Geochemical subclassification of shergottites and the crustal assimilation model. In Proceedings of the 36th Lunar and Planetary Science Conference. League City, Texas: Cambridge University Press/Lunar and Planetary Institute.222

Wieczorek, M. A. and Zuber, M. T. (2004). Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res., 109(E1), E01009.

Zipfel, J., Scherer, P., Spettel, B., Dreibus, G., Schultz, L. (2000). Petrology and chemistry of the new shergottite Dar al Gani 476. Meteorit. Planet. Sci., 35(1), 95–106.


TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Petrogenesis of basaltic shergottite NWA 8656

Ting Cao, Qi He, ZhuQing Xue