Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

2018, 2(1): 1-14. doi: 10.26464/epp2018001


Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters


Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China


Lunar and Planetary Science Laboratory, Macau University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Macau


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China

Corresponding author: BinBin Ni, bbni@whu.edu.cn

Received Date: 2017-07-29
Web Publishing Date: 2018-01-01

Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to LJ3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.

Key words: Jovian radiation belts, whistler-mode chorus, resonant wave-particle interactions, magnetospheric state

Bagenal, F., and Delamere, P. A (2011), Flow of mass and energy in the magnetospheres of Jupiter and Saturn, J. Geophys. Res., 116, A05209, doi:10.1029/2010JA016294. doi: 10.1029/2010JA016294.

Berge, G. L., and Gulkis, S. (1976). Earth-based observations of Jupiter: Millimeter to meter wavelengths. Tech. Rep., Univ. of Arizona Press, Tucson, Arizona.

Bolton, S. J., Janssen, M., Thorne, R., Levin, S., Klein, M., Gulkis, S., Bastian, T., Sault, R., Elachi, C., Hofstadter, M., Bunker, A., Dulk, G., Gudim, E., Hamilton, G., Johnson, W. T. K., Leblanc, Y., Liepack, O., McLeod, R., Roller, J., Roth, L., and West, R. (2002), Ultra-relativistic electrons in Jupiter's radiation belts, Nature, 415 (6875), 987-991. doi: 10.1038/415987a.

Burke, B. F., and Franklin, K. L. (1955), Observations of a variable radio source associated with the planet Jupiter, J. Geophys. Res., 60 (2), 213-217. doi: 10.1029/JZ060i002p00213.

Carr, T. D., and Gulkis, S. (1969), The magnetosphere of Jupiter, Annu. Rev. Astron. Astrophys., 7, 577–618, doi:10.1146/annurev.aa.07.090169.003045. doi: 10.1146/annurev.aa.07.090169.003045.

de Soria-Santacruz, M., Garrett, H. B., Evans, R. W., Jun, I., Kim, W., Paranicas, C., and Drozdov, A. (2016), An empirical model of the high-energy electron environment at Jupiter, J. Geophys. Res. Space Physics, 121, 9732–9743, doi:10.1002/2016JA023059. doi: 10.1002/2016JA023059.

Drake, F. D., and Hvatum, S. (1959), Non-thermal microwave radiation from Jupiter, Astron. J., 64, 329-330.

Gerard, E. (1970), Observations of Jupiter at 11.13 cm, Astron. Astrophys., 8, 181.

Gerard, E. (1976), Variation of the radio emission of Jupiter at 21.3 and 6.2 cm wavelength, Astron. Astrophys., 50, 353-360.

Glauert, S. A., and Horne, R. B. (2005), Calculation of pitch angle and energy diffusion coefficients with the PADIE code, J. Geophys. Res., 110, A04206, doi:10.1029/2004JA010851. doi: 10.1029/2004JA010851.

Horne, R. B., Thorne, R. M., Glauert, S. A., Menietti, J. D., Shprits, Y. Y., and Gurnett, D. A. (2008), Gyro-resonant electron acceleration at Jupiter, Nature Phys., 4 (4), 301-304. doi: 10.1038/nphys897.

Khurana, K. K. (1997), Euler potential models of Jupiter’s magnetospheric field, J. Geophys. Res., 102(6), 11295-11306, doi:10.1029/97JA00563. doi: 10.1029/97JA00563.

Klein, M. J. (1976), The variability of the total flux density and polarization of Jupiter's decimetric radio emission, J. Geophys. Res., 81 (19), 3380-3382. doi: 10.1029/JA081i019p03380.

Klein, M. J., Thompson, T. J., and Bolton, S. (1989). Systematic observations and correlation studies of variations in the synchrotron radio emission from Jupiter. In Time Variable Phenomena in The Jovian System. NASA Special Publication, vol. 494, pp.151–155.

Ni, B. B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J. (2008), Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation, Geophys. Res. Lett., 35, L11106, doi:10.1029/2008GL034032. doi: 10.1029/2008GL034032.

Ni, B. B., Thorne, R. M., Meredith, N. P., Horne, R. B., and Shprits, Y. Y. (2011), Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves, J. Geophys. Res., 116, A04219, doi:10.1029/2010JA016233. doi: 10.1029/2010JA016233.

Ni, B. B., Cao, X., Zou, Z. Y., Zhou, C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., Shi, R., and Xie, L. (2015), Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales, J. Geophys. Res. Space Physics, 120, 7357–7373, doi:10.1002/2015JA021466. doi: 10.1002/2015JA021466.

Persoon, A. M., Gurnett, D. A., Kurth, W. S., and Groene, J. B. (2006), A simple scale height model of the electron density in Saturn’s plasmadisk, Geophys. Res. Lett., 33, L18106, doi:10.1029/2006GL027090. doi: 10.1029/2006GL027090.

Radhakrishnan, V., and Roberts, J. A. (1960), Polarization and angular extent of the 960-Mc/sec radiation from Jupiter, Phys. Rev. Lett., 4 (10), 493. doi: 10.1103/PhysRevLett.4.493.

Santos-Costa, D., and Bourdarie, S. A. (2001), Modeling the inner Jovian electron radiation belt including non-equatorial particles, Planet. Space Sci., 49, 303–312, doi:10.1016/S0032-0633(00)00151-3. doi: 10.1016/S0032-0633(00)00151-3.

Santos-Costa, D., Bolton, S. J., Thorne, R. M., Miyoshi, Y., and Levin, S. M. (2008), Investigating the origins of the Jovian decimetric emission’s variability, J. Geophys. Res., 113, A01204, doi:10.1029/2007JA012396. doi: 10.1029/2007JA012396.

Shprits, Y. Y., Menietti, J. D., Gu, X., Kim, K. C., and Horne, R. B. (2012), Gyroresonant interactions between the radiation belt electrons and whistler mode chorus waves in the radiation environments of Earth, Jupiter, and Saturn: A comparative study, J. Geophys. Res., 117 (A11), doi:10.1029/2012JA018031. doi: 10.1029/2012JA018031.

Tao, X., Thorne, R. M., Horne, R. B., Ni, B., Menietti, J. D., Shprits, Y. Y., and Gurnett, D. A. (2011), Importance of plasma injection events for energization of relativistic electrons in the Jovian magnetosphere, J. Geophys. Res., 116(A01), doi:10.1029/2010JA01610. doi: 10.1029/2010JA01610.

Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2013). Electron acceleration at Jupiter: Input from cyclotron-resonant interaction with whistler-mode chorus waves. In Ann. Geophys., vol. 31, pp. 1619–1630, Copernicus GmbH.

Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2014), The origin of Jupiter's outer radiation belt, J. Geophys. Res., 119 (5), 3490-3502, doi:10.1002/2014JA019891. doi: 10.1002/2014JA019891.


LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 1-9. doi: 10.26464/epp2018023


Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004


Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()

Figures And Tables

Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao