Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022

2019, 3(3): 204-211. doi: 10.26464/epp2019022

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001

1. 

School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. 

Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

Corresponding author: SuiYan Fu, suiyanfu@pku.edu.cn

Received Date: 2019-03-02
Web Publishing Date: 2019-05-01

Cluster satellites observed three successive outflowing ion beams on 28 March, 2001. It is generally accepted that these ion beams, composed of H+, He+, and O+ ions, with three inverted-V structures in their energy spectra, are produced by acceleration through U-shaped potential structures. By eliminating the background ion population and employing Maxwelling fitting, we find that ions coming from the center of the potential structure have higher temperature than those from the flanks. Higher temperature of O+ and He+ compared to that of H+ indicates that heavy ions are preferentially heated; we further infer that the heating efficiencies of O+ and He+ ions differ between the center and edges of the U-shaped potential structures. Estimation based on pitch angle observations shows that heating may also occur at an altitude above the upper boundary of the auroral acceleration region (AAR), where these beams are generally thought to be formed.

Key words: oxygen; ion beams; inverted-V structures; U-shaped potential drop; preferentially heated heavy ions; heating above AAR

Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson, J. G., Glassmeier, K. H., Musmann, G., Lühr, H., Buchert, S., … Kivelson, M. G. (1997). The cluster magnetic field investigation. Space Sci. Rev., 79(1-2), 65–91. https://doi.org/10.1023/A:1004970907748

Block, L. P. (1972). Potential double layers in the ionosphere. Cosmic Electrodyn., 3, 349.

Block, L. P., and Fälthammar, C. G. (1990). The role of magnetic-field-aligned electric fields in auroral acceleration. J. Geophys. Res. Space Phys., 95(A5), 5877–5888. https://doi.org/10.1029/JA095iA05p05877

Bonnell, J., Kintner, P., Wahlund, J. E., Lynch, K., and Arnoldy, R. (1996). Interferometric determination of broadband ELF wave phase velocity within a region of transverse auroral ion acceleration. Geophys. Res. Lett., 23(23), 3297–3300. https://doi.org/10.1029/96GL03238

Chang, T., Crew, G. B., Hershkowitz, N., Jasperse, J. R., Retterer, J. M., and Winningham, J. D. (1986). Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves. Geophys. Res. Lett., 13(7), 636–639. https://doi.org/10.1029/GL013i007p00636

Chiu, Y. T., and Schulz, M. (1978). Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral region. J. Geophys. Res. Space Phys., 83(A2), 629–642. https://doi.org/10.1029/JA083iA02p00629

Collin, H. L., Peterson, W. K., and Shelley, E. G. (1987). Solar cycle variation of some mass dependent characteristics of upflowing beams of terrestrial ions. J. Geophys. Res. Space Phys., 92(A5), 4757–4762. https://doi.org/10.1029/JA092iA05p04757

Cornilleau-Wehrlin, N., Chanteur, G., Perraut, S., Rezeau, L., Robert, P., Roux, A., de Villedary, C., Canu, P., Maksimovic, M., … Le Contel, O. (2003). First results obtained by the Cluster STAFF experiment. Ann. Geophys., 21(2), 437–456. https://doi.org/10.5194/angeo-21-437-2003

Cui, Y. B., Fu, S. Y., and Parks, G. K. (2014). Heating of ionospheric ion beams in inverted-V structures. Geophys. Res. Lett., 41(11), 3752–3758. https://doi.org/10.1002/2014GL060524

Cui, Y. B., Fu, S. Y., Zong, Q. G., Xie, L., Sun, W. J., Zhao, D., Wu, T., and Parks, G. (2016). Altitude of the upper boundary of AAR based on observations of ion beams in inverted-V structures: A case study. Sci. China Earth Sci., 59(7), 1489–1497. https://doi.org/10.1007/s11430-016-0019-3

Echer, E., Korth, A., Zong, Q. G., Fraünz, M., Gonzalez, W. D., Guarnieri, F. L., Fu, S. Y., and Reme, H. (2008). Cluster observations of O+ escape in the magnetotail due to shock compression effects during the initial phase of the magnetic storm on 17 August 2001. J. Geophys. Res. Space Phys., 113(A5), A05209. https://doi.org/10.1029/2007JA012624

Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Roth, I., … Kistler, L. (1998). FAST satellite observations of large-amplitude solitary structures. Geophys. Res. Lett., 25(12), 2041–2044. https://doi.org/10.1029/98GL00636

Ergun, R. E., Andersson, L., Main, D., Su, Y. J., Newman, D. L., Goldman, M. V., Carlson, C. W., Hull, A. J., McFadden, J. P., and Mozer, F. S. (2004). Auroral particle acceleration by strong double layers: The upward current region. J. Geophys. Res. Space Phys., 109(A12), A12220. https://doi.org/10.1029/2004JA010545

Erlandson, R. E., Zanetti, L. J., Acuña, M. H., Eriksson, A. I., Eliasson, L., Boehm, M. H., and Blomberg, L. G. (1994). Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines. Geophys. Res. Lett., 21(17), 1855–1858. https://doi.org/10.1029/94GL01363

Escoubet, C. P., Fehringer, M., and Goldstein, M. (2001). Introduction: The Cluster mission. Ann. Geophys., 19(10-12), 1197–1200. https://doi.org/10.5194/angeo-19-1197-2001

Gorney, D. J., Clarke, A., Croley, D., Fennell, J., Luhmann, J., and Mizera, P. (1981). The distribution of ion beams and conics below 8000 km. J. Geophys. Res. Space Phys., 86(A1), 83–89. https://doi.org/10.1029/JA086iA01p00083

Hudson, M. K., and Mozer, F. S. (1978). Electrostatic shocks, double layers, and anomalous resistivity in the magnetosphere. Geophys. Res. Lett., 5, 131. https://doi.org/10.1029/GL005i002p00131

Kintner, P. M., Vago, J., Chesney, S., Arnoldy, R. L., Lynch, K. A., Pollock, C. J., and Moore, T. E. (1992). Localized lower hybrid acceleration of ionospheric plasma. Phys. Rev. Lett., 68(16), 2448–2451. https://doi.org/10.1103/PhysRevLett.68.2448

Knudsen, D. J., Whalen, B. A., Abe, T., and Yau, A. (1994). Temporal evolution and spatial dispersion of ion conics: evidence for a polar cusp heating wall. In J. L. Burch, et al. (Eds.), Solar System Plasmas in Space and Time (pp. 163-169). Washington DC: American Geophysical Union. https://doi.org/10.1029/GM084p0163222

Korth, A., Fränz, M., Zong, Q. G., Fritz, T. A., Sauvaud, J. A., Rème, H., Dandouras, I., Friedel, R., Mouikis, C. G., … Daly, P. W. (2004). Ion injections at auroral latitude during the March 31, 2001 magnetic storm observed by Cluster. Geophys. Res. Lett., 31(20), L20806. https://doi.org/10.1029/2004GL020356

Kronberg, E. A., Ashour-Abdalla, M., Dandouras, I., Delcourt, D. C., Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V., Liao, J., Maggiolo, R., … Zelenyi, L. M. (2014). Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models. Space Sci. Rev., 184(1-4), 173–235. https://doi.org/10.1007/s11214-014-0104-0

Lu, G., Reiff, P. H., Moore, T. E., and Heelis, R. A. (1992). Upflowing ionospheric ions in the auroral region. Journal of Geophysical Research: Space Physics, 97(A11), 16855–16863. https://doi.org/10.1029/92JA01435

Lund, E. J., Möbius, E., Tang, L., Kistler, L. M., Popecki, M. A., Klumpar, D. M., Peterson, W. K., Shelley, E. G., Klecker, B., … Pfaff R. F. (1998). FAST observations of preferentially accelerated He+ in association with auroral electromagnetic ion cyclotron waves. Geophys. Res. Lett., 25(12), 2049–2052. https://doi.org/10.1029/98GL00304

Lund, E. J., Möbius, E., Klumpar, D. M., Kistler, L. M., Popecki, M. A., Klecker, B., Ergun, R. E., McFadden, J. P., Carlson, C. W., and Strangeway, R. J. (1999). Direct comparison of transverse ion acceleration mechanisms in the auroral region at solar minimum. J. Geophys. Res. Space Phys., 104(A10), 22801–22805. https://doi.org/10.1029/1999JA900265

Lynch, K. A., Arnoldy, R. L., Kintner, P. M., and Bonnell, J. (1996). The AMICIST auroral sounding rocket: A comparison of transverse ion acceleration mechanisms. Geophys. Res. Lett., 23(23), 3293–3296. https://doi.org/10.1029/96GL02688

Lynch, K. A., Arnoldy, R. L., Kintner, P. M., Schuck, P., Bonnell, J. W., and Coffey, V. (1999). Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations. J. Geophys. Res. Space Phys., 104(A12), 28515–28534. https://doi.org/10.1029/1999JA900289

Marklund, G. T. (2009). On the ionospheric coupling of auroral electric fields. Nonlin. Processes Geophys., 16(2), 365–372. https://doi.org/10.5194/npg-16-365-2009

Marklund, G. T., Sadeghi, S., Karlsson, T., Lindqvist, P. A., Nilsson, H., Forsyth, C., Fazakerley, A., Lucek, E. A., and Pickett, J. (2011). Altitude distribution of the auroral acceleration potential determined from cluster satellite data at different heights. Phys. Rev. Lett., 106(5), 055002. https://doi.org/10.1103/PhysRevLett.106.055002

Möbius, E., Tang, L., Kistler, L. M., Popecki, M., Lund, E. J., Klumpar, D., Peterson, W., Shelley, E. G., Klecker, B., … Pfaff, R. (1998). Species dependent energies in upward directed ion beams over auroral arcs as observed with FAST TEAMS. Geophys. Res. Lett., 25(12), 2029–2032. https://doi.org/10.1029/98GL00381

Moore, T. E., Lundin, R., Alcayde, D., André, M., Ganguli, S. B., Temerin, M., and Yau, A. (1999). Source processes in the high-latitude ionosphere. Space Sci. Rev., 88(1-2), 7–84. https://doi.org/10.1023/A:1005299616446

Morioka, A., Miyoshi, Y., Tsuchiya, F., Misawa, H., Yumoto, K., Parks, G. K., Anderson, R. R., Menietti, J. D., and Honary, F. (2009). Vertical evolution of auroral acceleration at substorm onset. Ann. Geophys., 27(2), 525–535. https://doi.org/10.5194/angeo-27-525-2009

Norqvist, P., André, M., Eliasson, L., Eriksson, A. I., Blomberg, L., Lühr, H., and Clemmons, J. H. (1996). Ion cyclotron heating in the dayside magnetosphere. J. Geophys. Res. Space Phys., 101(A6), 13179–13193. https://doi.org/10.1029/95JA03596

Paschmann, G., Haaland, S., and Treumann, R. (2003). Auroral Plasma Physics. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-1086-3222

Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., … Scudder, J. (2001). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys., 19(10-12), 1303–1354. https://doi.org/10.5194/angeo-19-1303-2001

Sadeghi, S., Marklund, G. T., Karlsson, T., Lindqvist, P. A., Nilsson, H., Marghitu, O.,.. Lucek, E. A. (2011). Spatiotemporal features of the auroral acceleration region as observed by Cluster. J Geophys Res: Space Physics, 116(A1). https://doi.org/10.1029/2011JA016505

Shelley, E. G., Sharp, R. D., and Johnson, R. G. (1976). Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett., 3(11), 654–656. https://doi.org/10.1029/GL003i011p00654

Song, Y., and Lysak, R. L. (2001). Towards a new paradigm: from a quasi-steady description to a dynamical description of the magnetosphere. Space Sci. Rev., 95(1-2), 273–292. https://doi.org/10.1023/A:1005288420253

Temerin, M., Cerny, K., Lotko, W., and Mozer, F. S. (1982). Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett., 48(17), 1175–1179. https://doi.org/10.1103/PhysRevLett.48.1175

Temerin, M., and Roth, I. (1986). Ion heating by waves with frequencies below the ion gyrofrequency. Geophys. Res. Lett., 13(11), 1109–1112. https://doi.org/10.1029/GL013i011p01109

Wahlund, J. E., Eriksson, A. I., Holback, B., Boehm, M. H., Bonnell, J., Kintner, P. M., Seyler, C. E., Clemmons, J. H., Eliasson, L., … Zanetti, L. J. (1998). Broadband ELF plasma emission during auroral energization: 1.Slow ion acoustic waves. J. Geophys. Res. Space Phys., 103(A3), 4343–4375. https://doi.org/10.1029/97JA02008

Winglee, R. M., Dusenbery, P. B., Collin, H. L., Lin, C. S., and Persoon, A. M. (1989). Simulations and observations of heating of auroral ion beams. J. Geophys. Res. Space Phys., 94(A7), 8943–8965. https://doi.org/10.1029/JA094iA07p08943

Zong, Q. G., Zhang, H., Fu, S. Y., Wang, Y. F., Pu, Z. Y., Korth, A., Daly, P. W., and Fritz, T. A. (2008). Ionospheric oxygen ions dominant bursty bulk flows: Cluster and Double Star observations. J. Geophys. Res. Space Phys., 113(A7), A07S23. https://doi.org/10.1029/2007JA012764

[1]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[2]

YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015

[3]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[4]

Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016

[5]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[6]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001

FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong