Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics. doi: 10.26464/epp2019017

doi: 10.26464/epp2019017

ATMOSPHERIC PHYSICS

A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau

1. 

Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. 

University of Chinese Academy of Sciences, Beijing 100049, China

4. 

Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

5. 

Key Laboratory of Atmospheric Optics, Anhui institute of optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China

6. 

Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China

Corresponding author: JinQiang Zhang, zjq@mail.iap.ac.cnZhaoNan Cai, caizhaonan@mail.iap.ac.cn

Received Date: 2018-11-03
Web Publishing Date: 2019-03-01

The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate. In particular, the Asian summer monsoon (ASM) anticyclone circulation system over the Tibetan Plateau is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. To improve understanding of these physical processes, a multi-location joint atmospheric experiment was performed over the Tibetan Plateau from late July to August in 2018, funded by the five-year (2018–2022) STEAM (stratosphere and troposphere exchange experiment during ASM) project, during which multiple platforms/instruments—including long-duration stratospheric balloons, dropsondes, unmanned aerial vehicles, special sounding systems, and ground-based and satellite-borne instruments—will be deployed. These complementary methods of data acquisition are expected to provide comprehensive atmospheric parameters (aerosol, ozone, water vapor, CO2, CH4, CO, temperature, pressure, turbulence, radiation, lightning and wind); the richness of this approach is expected to advance our comprehension of key mechanisms associated with thermal, dynamical, radiative, and chemical transports over the Tibetan Plateau during ASM activity.

Key words: Tibetan Plateau, Asian summer monsoon, stratosphere and troposphere exchange

Bergman, J. W., Fierli, F., Jensen, E. J., Honomichl, S., and Pan, L. L. (2013). Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit. J. Geophys. Res., 118(6), 2560–2575. https://doi.org/10.1002/jgrd.50142

Bian, J. C., Yan, R. C., and Chen, H. B. (2011). Tropospheric pollutant transport to the stratosphere by Asian summer monsoon. Chin. J. Atmos. Sci.(in Chinese) , 35(5), 897–902. https://doi.org/10.3878/j.issn.1006-9895.2011.05.09

Bian, J. C., Pan, L. L., Paulik, L., Vömel, H., Chen, H. B., and Lu, D. R. (2012). In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophys. Res. Lett., 39(19), L19808. https://doi.org/10.1029/2012GL052996

Chen, B., Xu, X. D., Yang. S., and Zhao, T. L. (2012). Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach. Atmos. Chem. Phys., 12(13), 5827–5839. https://doi.org/10.5194/acp-12-5827-2012

Fu, R., Hu, Y. L, Wright, S., Jiang, H. H., Dickinson, R. E., Chen, M. X., Filipiak, M., Read, W. G., Waters, J. W., and Wu, D. L. (2006). Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103(15), 5664–5669. https://doi.org/10.1073/pnas.0601584103

Gao, R. S., Telg, H., McLaughlin, R. J., Ciciora, S. J., Watts, L. A., Richardson, M. S., Schwarz, J. P., Perring, A. E., Thornberry, T. D., … Fahey, D. W. (2016). A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements. Aerosol Sci. Technol., 50(1), 88–99. https://doi.org/10.1080/02786826.2015.1131809

Gettelman, A., Kinnison, D. E., Dunkerton, T. J., and Brasseur, G. P. (2004). Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109(D22), D22101. https://doi.org/10.1029/2004JD004878

Karion, A., Sweeney, C., Tans, P., and Newberger. T. (2010). AirCore: an innovative atmospheric sampling system. J. Atmos. Ocean. Technol., 27(11), 1839–1853. https://doi.org/10.1175/2010JTECHA1448.1

Komhyr, W. D. (1969). Electrochemical concentration cells for gas analysis. Ann. Geophys., 25, 203–210

Li, D., Vogel, B., Müller, R., Bian, J. C., Günther, G., Li, Q., Zhang, J. Q., Bai, Z. X., Vömel, H., and Riese, M. (2018). High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions. Atmos. Chem. Phys., 18(24), 17979–17994. https://doi.org/10.5194/acp-18-17979-2018

Li, Q. B., Jiang, J. H., Wu, D. L., Read, W. G., Livesey, N. J., Waters, J. W., Zhang, Y. S., Wang, B., Filipiak, M. J., … Jacob, D. J. (2005). Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32(14), L14826. https://doi.org/10.1029/2005GL022762

Lu, D. R., Pan, W. L., and Wang, Y. N. (2018). Atmospheric profiling synthetic observation system in Tibet. Adv. Atmos. Sci., 35(3), 264–267. https://doi.org/10.1007/s00376-017-7251-7

Park, M., Randel, W. J., Gettelman, A., Massie, S. T., and Jiang, J. H. (2007). Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 112(D16), D16309. https://doi.org/10.1029/2006JD008294

Qing, C., Wu, X. Q., Huang, H. H., Tian, Q. G., Zhu, W. T., Rao, R. Z., and Li, X. B. (2016a). Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model. Opt. Express, 24(18), 20424–20436. https://doi.org/10.1364/OE.24.020424

Qing, C., Wu, X. Q., Li, X. B., Zhu, W. Y., Qiao, C. H., Rao, R. Z., and Mei, H. P. (2016b). Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean. Opt. Express, 24(12), 13303–13315. https://doi.org/10.1364/OE.24.013303

Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., Boone, C., and Pumphrey, H. (2010). Asian monsoon transport of pollution to the stratosphere. Science, 328(5978), 611–613. https://doi.org/10.1126/science.1182274

Rosen, J. M., and Kjome, N. T. (1991). Backscattersonde: a new instrument for atmospheric aerosol research. Appl. Opt., 30(12), 1552–1561. https://doi.org/10.1364/AO.30.001552

Solomon, S., Daniel, J. S., Neely III, R. R., Vernier J. P., Dutton, E. G., and Thomason, L. W. (2011). The persistently variable " background” stratospheric aerosol layer and global climate change. Science, 333(6044), 866–870. https://doi.org/10.1126/science.1206027

Vernier, J. P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J., Martinsson, B. G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M. (2015). Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res., 120(4), 1608–1619. https://doi.org/10.1002/2014JD022372

Vömel, H., David, D. E., and Smith. K. (2007). Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112(D8), D08305. https://doi.org/10.1029/2006JD007224

Wu, G. X., Liu, Y. M., Zhang, Q., Duan, A. M., Wang, T. M., Wan, R. J., Liu, X., Li, W. P., Wang, Z. Z., and Liang, X. Y. (2007). The influence of mechanical and thermal forcing by the Tibetan plateau on Asian climate. J. Hydrometeorol., 8(4), 770–789. https://doi.org/10.1175/JHM609.1

Wu, X. Q., Tian, Q. G., Jiang, P., Chai, B., Qing, C., Cai, J., Jin, X. M., and Zhou, H. Y. (2015). A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer. Adv. Polar Sci., 26(4), 305–310. https://doi.org/10.13679/j.advps.2015.4.00305

Yao, T., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X. X., Duan, K. Q., Zhao, H. B., … Joswiak, D. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2(9), 663–667. https://doi.org/10.1038/nclimate1580

Yu, P., Rosenlof, K. H., Liu, S., Telg, H., Thornberry, T. D., Rollins, A. W., Portmann, R. W., Bai, Z., Ray, E. A., … Gao, R. S. (2017). Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proc. Natl. Acad. Sci. USA, 114(27), 6972–6977. https://doi.org/10.1073/pnas.1701170114

Zhou, X. J., Luo, C., Li, W. L., and Shi, J. E. (1995). Variation of total ozone over China and the Tibetan Plateau low center. Chin. Sci. Bull.(in Chinese) , 40(15), 1396–1398

Zhou, X. J., Zhao, P., Chen, J. M., Chen, L. X., and Li, W. L. (2009). Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China Ser. D Earth Sci., 52(11), 1679–1693. https://doi.org/10.1007/s11430-009-0194-9

Zhu, W. Y., Xu, C. D., Qian, X. M., and Wei, H. L. (2013). Statistical analysis of the spatial-temporal distribution of aerosol extinction retrieved by micro-pulse lidar in Kashgar, China. Opt. Express, 21(3), 2531–2537. https://doi.org/10.1364/OE.21.002531

[1]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[2]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

[3]

KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu