Citation: Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

2018, 2(2): 139-149. doi: 10.26464/epp2018014


The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications


Department of Geosciences, National Taiwan University, Taipei, Taiwan, China


School of Earth and Space Sciences, Peking University, Beijing 100871, China


Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China


Department of Earth Science, University of California, Santa Barbara, CA, U.S.A.

Corresponding author: Li Zhao,

Received Date: 2018-02-17
Web Publishing Date: 2018-03-01

The 13 November 2016 Kaikoura earthquake occurred in the northeastern coastal region of the South Island, New Zealand. The Mw 7.8 mainshock generated a complex pattern of surface ruptures, and was followed within about 12 hours by three moderate shocks of Mw ≥ 6.0. Here we use teleseismic waveforms to invert for the source rupture of the Kaikoura earthquake. The resulting slip-distribution model exhibits insignificant slip near the hypocenter and three pockets of major slip zones with distinct senses of motion. The mainshock started from a rupture near the hypocenter, grew into thrust on shallow crustal faults ~50 km northeast of the hypocenter, and then developed into two slip zones: a deeper one with oblique thrust and a shallower one with almost purely right-lateral strike-slip. Locations of the thrust and strike-slip motions in the slip-distribution model agree well with reported coastal uplifts and horizontal offsets. The overall slip pattern is dominated by horizontal motion, especially at shallow depth, due to the partitioning of thrust and strike-slip motions above the subduction zone megathrust. Aftershock distribution suggests that most aftershocks tend to occur near the edges of the major slip zones of the mainshock. This observation on aftershock locations may provide useful information for seismic hazard assessments after large earthquakes.

Key words: slip distribution; Kaikoura earthquake; aftershock distribution; slip partitioning

Anderson, H., and Webb, T. H. (1994). New Zealand seismicity: patterns revealed by the upgraded National Seismograph Network. New Zealand J. Geol. Geophys., 37, 477–493. doi: 10.1080/00288306.1994.9514633.

Avouac, J.-P., Meng, L. S., Wei, S. J., Wang, T., and Ampuero, J.-P. (2015). Lower edge of locked Main Himalaya Thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci., 8, 708–711. doi: 10.1038/ngeo2518.

Barnes, P. M. (2009). Postglacial (after 20 ka) dextral slip rate of the offshore Alpine fault, New Zealand. Geology, 37, 3–6. doi: 10.1130/G24764A.1.

Bassin, C., Laske, G., and Masters, T. G. (2000). The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU, 81, F897. (请核对页码)

Bradley, B. A., Razafindrakoto, N. T., and Polak, V. (2017). Ground-motion observations from the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake and insights from broadband simulations. Seismol. Res. Lett., 88, 740–756. doi: 10.1785/0220160225.

Cesca, S., Zhang, Y., Mouslopoulou, V., Wang, R., Saul, J., Savage, M., Heimann, S., Kufner, S.-K., Oncken, O., and Dahm, T. (2017). Complex rupture process of the Mw7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth Planet. Sci. Lett., 478, 110–120. doi: 10.1016/j.jpgl.2017.08.024.

Clayton, B. S., Hartzell, S. H., Moschetti, M. P., and Minson, S. E. (2017). Finite-fault Bayesian inversion of teleseismic body waves. Bull. Seismol. Soc. Am., 107, 1526–1544. doi: 10.1785/0120160268.


Duputel, Z., and Rivera, L. (2017). Long-period analysis of the 2016 Kaikoura earthquake. Phys. Earth Planet. Inter., 265, 62–66. doi: 10.1016/j.pepi.2017.02.004.



GeoNet Earthquake Catalogue.

Gledhill, K., Ristau, J., Reyners, M., Fry, B., and Holden, C. (2011). The Darfield (Canterbury, New Zealand) Mw 7.1 earthquake of September 2010: A preliminary seismological report. Seismol. Res. Lett., 82, 378–386. doi: 10.1785/gssrl.82.3.378.

Grandin, R., Vallée, M., Satriano, C., Lacassin, R., Klinger, Y., Simoes, M., and Bollinger, L. (2015). Rupture process of the MW = 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation. Geophys. Res. Lett., 42, 8373–8382. doi: 10.1002/2015GL066044.


Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C. R., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., … Stirling, M. (2017). Complex multifault rupture during the 2016 MW7.8 Kaiköura earthquake, New Zealand. Science, 356, eaam7194. doi: 10.1126/science.aam7194.

Hartzell, S. H., and Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 73, 1553–1583.

Hollingsworth, J., Ye, L. L., and Avouac, J.-P. (2017). Dynamically triggered slip on a splay fault in the MW7.8, 2016 Kaikoura (New Zealand) earthquake. Geophys. Res. Lett., 44, 3517–3525. doi: 10.1002/2016GL072228.

Hsieh, M.-C., Zhao, L., Ji, C., and Ma, K.-F. (2016). Efficient inversions for earthquake slip distributions in 3D structures. Seismol. Res. Lett., 87, 1342–1354. doi: 10.1785/0220160050.


Ji, C., Helmberger, D. V., Wald, D. J., and Ma, K.-F. (2003). Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res., 108(B9), 2412. doi: 10.1029/2002JB001764.

Ji, C., Wald, D. J., and Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California earthquake, Part I: Wavelet domain inversion theory and resolution analysis. Bull. Seismol. Soc. Am., 92, 1192–1207. doi: 10.1785/0120000916.

Kennett, B. L. N., and Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x.

Kikuchi, M., H. and Kanamori, H. (1982). Inversion of complex body waves. Bull. Seismol. Soc. Am., 72, 491–506.

Langridge, R. M., Campbell, J., Hill, N. L., Pere, V., Pope, J., Pettinga, J., Estrada, B., and Berryman, K. R. (2003). Paleoseismology and slip rate of the Conway Segment of the Hope Fault at Greenburn Stream, South Island, New Zealand. Ann. Geophys., 46, 1119–1139. doi: 10.4401/ag-3449.

Langridge, R. M., Villamor, P., Basili, R., Almond, P., Martinez-Diaz, J. J. and Canora, C. (2010). Revised slip rates for the Alpine fault at Inchbonnie: Implications for plate boundary kinematics of South Island, New Zealand. Lithosphere, 2, 139–152. doi: 10.1130/L88.1.

Litchfield, N. J., van Dissen, R., Sutherland, R., Barnes, P. M., Cox, S. C., Norris, R., Beavan, R. J., Langridge, R., Villamor, P., … Clark, K. (2014). A model of active faulting in New Zealand. New Zealand. J. Geol. Geophys., 57, 32–56. doi: 10.1080/00288306.2013.854256.

Little, T. A., and Jones, A. (1998). Seven million years of strike-slip and related off-fault deformation, northeastern Marlborough fault system, South Island, New Zealand. Tectonics, 17, 285–302. doi: 10.1029/97TC03148.

Liu, P. C., and Archuleta, R. J. (2004). A new nonlinear finite fault inversion with three-dimensional Green’s functions: Application to the 1989 Loma Prieta, California, earthquake. J. Geophys. Res., 109, B02318. doi: 10.1029/2003JB002625.

Minson, S. E., Simons, M., and Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I-theory and algorithm. Geophys. J. Int., 194, 1701–1726. doi: 10.1093/gji/ggt180.

Nicol, A., and van Disson, R. 2002. Up-dip partitioning of displacement components on the oblique-dip Clarence Fault, New Zealand. J. Structural Geol., 24, 1521–1535. doi: 10.1016/S0191-8141(01)00141-9.


Olson, A. H., and Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bull. Seismol. Soc. Am., 72, 1969–2001.

Piatanesi, A., Cirella, A., Spudich, P., and Cocco, M. (2007). A global search inversion for earthquake kinematic rupture history: Application to the 2000 western Tottori, Japan earthquake. J. Geophys. Res., 112, B07314. doi: 10.1029/2006JB004821.

Power, W., Clark, K., King, D. N., Borrero, J., Howarth, J., Lane, E. M., Goring, D., Goff, J., Chagué-Goff, C., … Benson, A. (2017). Tsunami runup and tide-gauge observations from the 14 November 2016 M7.8 Kaiköura earthquake, New Zealand. Pure Appl. Geophys., 174, 2457–2473. doi: 10.1007/s00024-017-1566-2.

Shi, X. H., Wang, Y., Liu-Zeng, J., Weldon, R., Wei, S. J., Wang, T., and Sieh, K. (2017). How complex is the 2016 Mw 7.8 Kaikoura earthquake, South Island, New Zealand?. Sci. Bull., 62, 309–311. doi: 10.1016/j.scib.2017.01.033.


USGS Significant Earthquakes Archive.

Wang, T., Wei, S. J., Shi, X. H., Qiu, Q., Li, L. L., Peng, D. J., Weldon, R. J., and Barbot, S. (2018). The 2016 Kaiköura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth Planet. Sci. Lett., 482, 44–51. doi: 10.1016/j.jpgl.2017.10.056.

Wessel, P., and Smith, W. (1998). New, improved version of the Generic Mapping Tools released. Eos. Trans. AGU, 79, 579. doi: 10.1029/98EO00426.


Yue, H., Simons, M., Duputel, Z., Jiang, J. L., Fielding, E., Liang, C., Owen, S., Moore, A., Riel, B., … Samsonov, S. V. 2016. Depth varying rupture properties during the 2015 Mw7.8 Gorkha (Nepal) earthquake. Tectonophysics, 714–715, 44–54. doi: 10.1016/j.tecto.2016.07.005.

Zhang, H., Koper, K. D., Pankow, K., and Ge, Z. X. (2017). Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults. Geophys. Res. Lett., 44, 4790–4798. doi: 10.1002/2017GL073461.

Zhao, L., Chen, P., and Jordan, T. H. (2006). Strain Green's tensors, reciprocity, and their applications to seismic source and structure studies. Bull. Seismol. Soc. Am., 96, 1753–1763. doi: 10.1785/0120050253.


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013


YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015


XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009


ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006


WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008


LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016


WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010

  • PDF Downloads()
  • Abstract views()
  • HTML views()

Figures And Tables

The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung