Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

2018, 2(3): 231-237. doi: 10.26464/epp2018022


In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause


Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China


Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA

Corresponding author: Qiu-Gang Zong,

Received Date: 2018-04-24
Web Publishing Date: 2018-05-01

Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles. For reconnection to occur, the frozen-in condition must break down in a localized region, commonly called the ‘diffusion region’. In Earth’s magnetosphere, ion diffusion regions have already been observed, while electron diffusion regions have not been detected due to their small scales (of the order of a few km) (Paschmann, 2008). In this paper we report, for the first time, in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth’s high-latitude magnetopause. The electron diffusion region is characterized by nongyrotropic electron distribution, strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets. Also observed were multiple micro-scale flux ropes, with a scale size of about 5 c/ωpe (12 km, with c/ωpe the electron inertial length), that are crucial for electron acceleration in the guide-field reconnection process (Drake et al., 2006a). The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.

Key words: electron diffusion region, magnetic reconnection, high-latitude magnetopause

Argall, M. R., Paulson, K., Alm, L., Rager, A., Dorelli, J., Shuster, J., Wang, S., Torbert, R. B., Vaith, H., … Ahmadi, N. (2018). Electron dynamics within the electron diffusion region of asymmetric reconnection. J. Geophys. Res. Space Phys., 123(1), 146–162.

Bale, S. D., Mozer, F. S., and Phan, T. (2002). Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause. Geophys. Res. Lett., 29(24), 33-1–33-4.

Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L. J., Moore, T. E., Ergun, R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., … Chandler, M. (2016). Electron-scale measurements of magnetic reconnection in space. Science, 352(6290), aaf2939.

Drake, J. F., Swisdak, M., Cattell, C., Shay, M. A., Rogers, B. N., and Zeiler, A. (2003). Formation of electron holes and particle energization during magnetic reconnection. Science, 299(5608), 873–877.

Drake, J. F., Swisdak, M., Che, H., and Shay, M. A. (2006a). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443(7111), 553–556.

Drake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N., and Kobayashi, S. (2006b). Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett., 33(13), L13105.

Drake, J. F., and Shay, M. A. (2007). Basic theory of collisionless reconnection. In Birn, J., Priest, E. R. (Eds.), Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations (pp. 87–107). Cambridge, UK: Cambridge University Press.222

Eastwood, J. P., Shay, M. A., Phan, T. D., and Øieroset, M. (2010). Asymmetry of the ion diffusion region Hall electric and magnetic fields during guide field reconnection: Observations and comparison with simulations. Phys. Rev. Lett., 104(20), 205001.

Eriksson, S., Wilder, F. D., Ergun, R. E., Schwartz, S. J., Cassak, P. A., Burch, J. L., Chen, L. J., Torbert, R. B., Phan, T. D., … Marklund, G. T. (2016). Magnetospheric multiscale observations of the electron diffusion region of large guide field magnetic reconnection. Phys. Rev. Lett., 117(1), 015001.

Fu, X. R., Lu, Q. M., and Wang, S. (2006). The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas, 13(1), 012309.

Giovanelli, R. G. (1947). Magnetic and electric phenomena in the Sun's atmosphere associated with sunspots. Mon. Not. R. Astron. Soc., 107(4), 338–355.

Hesse, M., Schindler, K., Birn, J., and Kuznetsova, M. (1999). The diffusion region in collisionless magnetic reconnection. Phys. Plasmas, 6(5), 1781–1795.

Hesse, M., Kuznetsova, M., and Hoshino, M. (2002). The structure of the dissipation region for component reconnection: Particle simulations. Geophys. Res. Lett., 29(12), 4-1–4-4.

Huang, C., Lu, Q. M., and Wang, S. (2010). The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection. Phys. Plasmas, 17(7), 072306.

Huba, J. D. (2005). Hall magnetic reconnection: Guide field dependence. Phys. Plasmas, 12(1), 012322.

Kleva, R. G., Drake, J. F., and Waelbroeck, F. L. (1995). Fast reconnection in high temperature plasmas. Phys. Plasma, 2(1), 23–34.

Lu, Q. M., Huang, C., Xie, J. L., Wang, R. S., Wu, M. Y., Vaivads, A., and Wang, S. (2010). Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations. J. Geophys. Res., 115(A11), A11208.

Lu, S., Lu, Q. M., Cao, Y., Huang, C., Xie, J. L., and Wang S. (2011). The effects of the guide field on the structures of electron density depletions in collisionless magnetic reconnection. Chin. Sci. Bull., 56(1), 48–52.

Mozer, F. S., Bale, S. D., and Phan, T. D. (2002). Evidence of diffusion regions at a subsolar magnetopause crossing. Phys. Rev. Lett., 89(1), 015002.

Mozer, F. S., Bale, S. D., McFadden, J. P., and Torbert, R. B. (2005). New features of electron diffusion regions observed at subsolar magnetic field reconnection sites. Geophys. Res. Lett., 32(24), L24102.

Øieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., and Lepping, R. P. (2001). In situ detection of collisionless reconnection in the Earth's magnetotail. Nature, 412(6845), 414–417.

Oka, M., Phan, T. D., Øieroset, M., and Angelopoulos, V. (2016). In situ evidence of electron energization in the electron diffusion region of magnetotail reconnection. J. Geophys. Res., 121(3), 1955–1968.

Paschmann, G., Sonnerup, B. U. Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russel, C. T., and Elphic, R. C. (1979). Plasma acceleration at the Earth's magnetopause: evidence for reconnection. Nature, 282(5736), 243–246.

Paschmann, G. (2008). Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett., 35(19), L19109.

Peng, F. Z., Fu, H. S., Cao, J. B., Graham, D. B., Chen, Z. Z., Cao, D., Xu, Y., Huang, S. Y., Wang, T. Y., … Burch, J. L. (2017). Quadrupolar pattern of the asymmetric guide–field reconnection. J. Geophys. Res., 122(6), 6349–6356.

Phan, T. D., Drake, J. F., Shay, M. A., Mozer, F. S., and Eastwood, J. P. (2007). Observational evidence for an elongated (>50 ion skin depths) electron diffusion region during fast magnetic reconnection. Phys. Rev. Lett., 99(25), 255002.

Pritchett, P. L. (2001). Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. J. Geophys. Res., 106(A3), 3783–3798.

Ricci, P., Brackbill, J. U., Daughton, W., and Lapenta, G. (2004). Collisionless magnetic reconnection in the presence of a guide field. Phys. Plasmas, 11(8), 4102–4114.

Robert, P., Dunlop, M. W., Roux, A., and Chanteur, G. (1998). Accuracy of current density determination. In Paschmann, G., and Daly, P. W. (Eds.), Analysis Methods for Multi Spacecraft Data (pp. 395). Bern, Switzerland: ESA.222

Rogers, B. N., Denton, R. E., Drake, J. F., and Shay, M. A. (2001). Role of Dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett., 87(19), 195004.

Scudder, J., and Daughton, W. " Illuminating” electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy. J. Geophys. Res., 113(A6), A06222.

Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E. (2001). Alfvénic collisionless magnetic reconnection and the Hall term. J. Geophys. Res., 106(A3), 3759–3772.

Sonnerup, B. U. Ö., and Cahill, L. J. Jr. (1967). Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res, 72(1), 171–183.

Tanaka, M. (1996). Asymmetry and thermal effects due to parallel motion of electrons in collisionless magnetic reconnection. Phys. Plasmas, 3(11), 4010–4017.

Vaivads, A., Khotyaintsev, Y., André, M., Retinò, A., Buchert, S. C., Rogers, B. N., Décréau, P., Paschmann, G., and Phan, T. D. (2004). Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett., 93(10), 105001.

Wang, R. S., Lu, Q. M., Huang, C., and Wang, S. (2010a). Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection. J. Geophys. Res., 115(A1), A01209.

Wang, R. S., Lu, Q. M., Du, A. M., and Wang, S. (2010b). In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons. Phys. Rev. Lett., 104(17), 175003.

Wang, R. S., Nakamura, R., Lu, Q. M., Du, A. M., Zhang, T. L., Baumjohann, W., Khotyaintsev, Y. V., Volwerk, M., André, M., … Lu, S. (2012). Asymmetry in the current sheet and secondary magnetic flux ropes during guide field magnetic reconnection. J. Geophys. Res., 117(A7), A07223.

Wang, R. S., Lu, Q. M., Nakamura, R., Huang, C., Du, A. M., Guo, F., Teh, W., Wu, M. Y., Lu, S., and Wang, S. (2016). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys., 12(3), 263–267.

Wilken, B., Zong, Q. G., Daglis, I. A., Doke, T., Livi, S., Maezawa, K., Pu, Z. Y., Ullaland, S., and Yamamoto, T. (1995). Tailward flowing energetic oxygen ion bursts associated with multiple flux ropes in the distant magnetotail: GEOTAIL observations. Geophys. Res. Lett., 22(23), 3267–327.

Zhang, H., Zong, Q. G., Fritz, T. A., Fu, S. Y., Schaefer, S., Glassmeier, K. H., Daly, P. W., Rème, H., and Balogh, A. (2008). Cluster observations of collisionless Hall reconnection at high–latitude magnetopause. J. Geophys. Res., 113(A3), A03204.

Zhang, Y. C., Lavraud, B., Dai, L., Wang, C., Marchaudon, A., Avanov, L., Burch, J., Chandler, M., Dorelli, J., … Torbert, R. (2017). Quantitative analysis of a Hall system in the exhaust of asymmetric magnetic reconnection. J. Geophys. Res., 122(5), 5277–5289.

Zong, Q. G., Fritz, T. A., Spence, H., Dunlop, M., Pu, Z. Y., Korth, A., Daly, P. W., Balogh, A., and Reme, H. (2003). Bursty energetic electrons confined in flux ropes in the cusp region. Planet. Space Sci., 51(12), 821–830.

Zong, Q. G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H., Lui, A. T., Vogiatzis, I., Glassmeier, K. H., … Reme, H. (2004). Cluster observations of earthward flowing plasmoid in the tail. Geophys. Res. Lett., 31(18), L18803.

Zong, Q. G., Fritz, T. A., Spence, H., Zhang, H., Huang, Z. Y., Pu, Z. Y., Glassmeier, K.-H., Korth, A., Daly, P. W., …. Reme, H. (2005). Plasmoid in the high latitude boundary/cusp region observed by Cluster. Geophys. Res. Lett., 32(1), L01101.


Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048


ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007


JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002


BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049


Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054


Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043


Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005


Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019


YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030


S. T. Yao, Z. S. Yue, Q. Q. Shi1, A. W. Degeling, H. S. Fu, A. M. Tian, H. Zhang, A. Vu, R. L. Guo, Z. H. Yao, J. Liu, Q. G. Zong, X. Z. Zhou, J. H. Li, W. Y. Li, H. Q. Hu, Y. Y. Liu, and W. J. Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics. doi: 10.26464/epp2021011


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037


Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053


Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013


Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang, 2020: A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements, Earth and Planetary Physics, 4, 266-273. doi: 10.26464/epp2020031

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause

Qiu-Gang Zong, Hui Zhang