Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. http://doi.org/10.26464/epp2018040

2018, 2(5): 430-437. doi: 10.26464/epp2018040

SOLID EARTH: EXPLORATION GEOPHYSICS

Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor

1. 

Key Laboratory of Metallogenic Prediction of Nonferrous Metals of Ministry of Education, Central South University, Changsha 410083, China

2. 

School of Geosciences and Info-physics, Central South University, Changsha 410083, China

3. 

Eastern China Bureau of Nonferrous Geological Exploration, Nanjing 210007, China

Corresponding author: XiaoZhong Tong, csumaysnow@csu.edu.cn

Received Date: 2018-06-12
Web Publishing Date: 2018-09-14

Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric (AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the two-dimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothness-constrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data.

Key words: audio-magnetotelluric/AMT, impedance tensor, rotation invariants, two-dimensional geo-electrical model, regularized inversion

Barcelona, H., Favetto, A., Peri, V. G., Pomposiello, C., and Ungarelli, C. (2013). The potential of audiomagnetotellurics in the study of geothermal fields: A case study from the northern segment of the La Candelaria Range, northwestern Argentina. J. Appl. Geophys., 88, 83–93. https://doi.org/10.1016/j.jappgeo.2012.10.004

Candansayar, M. E. (2008). Two-dimensional inversion of magnetotelluric data with consecutive use of conjugate gradient and least-squares solution with singular value decomposition algorithms. Geophys. Prospect., 56(1), 141–157. https://doi.org/10.1111/j.1365-2478.2007.00668.x

deGroot-Hedlin, C., and Constable, S. (1990). Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624. https://doi.org/10.1190/1.1442813

Farquharson, C. G., and Oldenburg, D. W. (2004). A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys. J. Int., 156(3), 411–425. https://doi.org/10.1111/j.1365-246X.2004.02190.x

Haber, E., and Oldenburg, D. W. (2000). A GCV based method for nonlinear ill-posed problems. Comput. Geosci., 4(1), 41–63. https://doi.org/10.1023/A:1011599530422

Hansen, P. C. (1997). Rank-deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. Philadelphia: SIAM.

Huang, R. H., Zhu, T., Liao, W. P., and Liu, K. (2017). The application of audio magnetotelluric sounding to the exploration of a tunnel engineering. Chin. J. Eng. Geophys.(in Chinese) , 14(2), 211–216. https://doi.org/10.3969/j.issn.1672-7940.2017.02.015

Kelbert, A., Egbert, G. D., and Schultz, A. (2008). Non-linear conjugate gradient inversion for global EM induction: Resolution studies. Geophys. J. Int., 173(2), 365–381. https://doi.org/10.1111/j.1365-246X.2008.03717.x

Lee, S. K., Kim, H. J., Song, Y., and Lee, C. K. (2009). MT2DInvMatlab-A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion. Comput. Geosci., 35(8), 1722–1734. https://doi.org/10.1016/j.cageo.2008.10.010

Lilley, F. E. M. (1993). Magnetotelluric analysis using Mohr circles. Geophysics, 58(10), 1498–1506. https://doi.org/10.1190/1.1443364

Mehanee, S., and Zhdanov, M. (2002). Two-dimensional magnetotelluric inversion of blocky geoelectrical structures. J. Geophys. Res., 107(2), EPM 2-1–EPM 2-11. https://doi.org/10.1029/2001JB000191

Muñíz, Y., Gómez-Treviño, E., Esparza, F. J., and Cuellar, M. (2017). Stable 2D magnetotelluric strikes and impedances via the phase tensor and the quadratic equation. Geophysics, 82(4), E169–E186. https://doi.org/10.1190/geo2015-0700.1

Negi, T., Mizunaga, H., Asamori, K., and Umeda, K. (2013). Three-dimensional magnetotelluric inversion using a heterogeneous smoothness-constrained least-squares method. Explor. Geophys., 44(3), 145–155. https://doi.org/10.1071/EG13026

Newman, G. A. and Alumbaugh, D. L. (1997). Three-dimensional massively parallel electromagnetic inversion—I. Theory. Geophys. J. Int., 128(2), 345–354. https://doi.org/10.1111/j.1365-246X.1997.tb01559.x

Nittinger, C. G., and Becken, M. (2018). Compressive sensing approach for two-dimensional magnetotelluric inversion using wavelet dictionaries. Geophys. Prospect., 66(4), 664–672. https://doi.org/10.1111/1365-2478.12605

Pedersen, L. B., and Engels, M. (2005). Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor. Geophysics, 70(2), G33–G41. https://doi.org/10.1190/1.1897032

Rodi, W., and Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1), 174–187. https://doi.org/10.1190/1.1444893

Roy, I. G. (2002). A robust descent type algorithm for geophysical inversion through adaptive regularization. Appl. Math. Modell., 26(5), 619–634. https://doi.org/10.1016/S0307-904X(01)00072-5

Roy, K. K., Dey, S., Srivastava, S., and Biswas, S. (2004). What to trust in a Magnetotelluric Model?. J. Indian Geophys. Union, 8(2), 157–171

Sasaki, Y. (1989). Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, 54(2), 254–262. https://doi.org/10.1190/1.1442649

Share, P. E., Jones, A. G., Muller, R., Khoza, D. T., Miensopust, M. P., and Webb, S. J. (2014). An audio-magnetotelluric investigation of the Otjiwarongo and Katima Mulilo regions, Namibia. Geophysics, 79(4), B151–B171. https://doi.org/10.1190/geo2013-0171.1

Singh, A., Dehiya, R., Gupta, P. K., and Israil, M. (2017). A MATLAB based 3D modeling and inversion code for MT data. Comput. Geosci., 104, 1–11. https://doi.org/10.1016/j.cageo.2017.03.019

Siripunvaraporn, W., and Egbert, G. (2007). Data space conjugate gradient inversion for 2-D magnetotelluric data. Geophys. J. Int., 170(3), 986–994. https://doi.org/10.1111/j.1365-246X.2007.03478.x

Smith, J. T., and Booker, J. R. (1991). Rapid inversion of two- and three-dimensional magnetotelluric data. J. Geophys. Res., 96(3), 3905–3992. https://doi.org/10.1029/90JB02416

Sun, J. J., and Li, Y. G. (2014). Adaptive L p inversion for simultaneous recovery of both blocky and smooth features in a geophysical model. Geophys. J. Int., 197(2), 882–899. https://doi.org/10.1093/gji/ggu067

Tarabees, E. A., Tewksbury, B. J., Mehrtens, C. J. and Younis, A. (2017). Audio-magnetotelluric surveys to constrain the origin of a network of narrow synclines in Eocene limestone, Western Desert, Egypt. J. Afr. Earth Sci., 136, 168–175. https://doi.org/10.1016/j.jafrearsci.2017.03.001

Tikhonov, A. V., and Arsenin, V. Y. (1987). Solution of Ill-Posed Problems. John Wiley and Sons.

Tong, X. Z., Xie, W., and Gao, D. W. (2017). Regularized inversion for coseismic slip distribution with active constraint balancing. J. Central South Univ., 24(12), 2961–2968. https://doi.org/10.1007/s11771-017-3710-7

Tong, X. Z., Wu, S. Y., and Xie, W. (2018). Modeling of two-dimensional magnetotelluric responses by using non-uniform meshes finite difference method. Chin. J. Eng. Geophys.(in Chinese) , 15(3), 338–346

Tuncer, V., Unsworth, M. J., Siripunvaraporn, W., and Craven, J. A. (2006). Exploration for unconformity-type uranium deposits with audiomagnetotelluric data: A case study from the McArthur River mine, Saskatchewan, Canada. Geophysics, 71(6), B201–B209. https://doi.org/10.1190/1.2348780

Van Beusekom, A. E., Parker, R. L., Bank, R. E., Gill, P. E., and Constable, S. (2011). The 2-D magnetotelluric inverse problem solved with optimization. Geophys. J. Int., 184(2), 639–650. https://doi.org/10.1111/j.1365-246X.2010.04895.x

Yamaguchi, S., Ogawa, Y., Fuji-Ta, K., Ujihara, N., Inokuchi, H., and Oshiman, N. (2010). Audio-frequency magnetotelluric imaging of the Hijima fault, Yamasaki fault system, southwest Japan. Earth,Planets Space, 62(4), 401–411. https://doi.org/10.5047/eps.2009.12.007

Yan, P., Kalscheuer, T., Hedin, P., and Juanatey, M. A. G. (2017). Two-dimensional magnetotelluric inversion using reflection seismic data as constraints and application in the COSC project. Geophys. Res. Lett., 44(8), 3554–3563. https://doi.org/10.1002/2017GL072953

[1]

YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026

[2]

DeYao Zhang, WenYong Pan, DingHui Yang, LingYun Qiu, XingPeng Dong, WeiJuan Meng, 2021: Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method, Earth and Planetary Physics, 5, 149-157. doi: 10.26464/epp2021022

[3]

Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022

[4]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[5]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[6]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[7]

MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics, 6, 61-69. doi: 10.26464/epp2022013

[8]

TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics, 6, 83-95. doi: 10.26464/epp2022008

[9]

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020

[10]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[11]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[12]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[13]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[14]

Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022

[15]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[16]

YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics, 6, 161-176. doi: 10.26464/epp2022020

[17]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[18]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[19]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[20]

QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor

XiaoZhong Tong, JianXin Liu, AiYong Li