Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

2019, 3(1): 17-25. doi: 10.26464/epp2019003

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection

1. 

Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China

2. 

Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China

3. 

National Supercomputer Center in Guangzhou, Sun Yat-sen University, Guangzhou 510006, China

4. 

Department of Earth Science and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis 55455, USA

5. 

Applied Physics and Applied Mathematics Department, Columbia University, New York 10027, USA

6. 

Key Laboratory of Computing Geodynamics, Chinese Academy of Sciences, Beijing 100049, China

7. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: BoJing Zhu, bjzhu@ynao.ac.cn

Received Date: 2018-06-12
Web Publishing Date: 2019-01-01

A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale (LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 1010–1011; the ratio of observed evolution time to electron gyroperiod is on the order of 107–109). The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes. In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model. We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands (kinetic scale), to the stage of coalescence and growth into larger islands (dynamic scale), to the stages of constant and quasi-constant (contracting-expanding) islands (hydro scale). As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands’ interactions in solar atmosphere LTSTMR activities (pico-, 10–2–105 m; nano-, 105–106 m; micro-, 106–107 m; macro-, 107–108 m; large-, 108–109 m).

Key words: hybrid particle acceleration mechanism, large temporal-spatial turbulent magnetic reconnection, Hydro-Dynamic-Kinetic model

Ambrosiano, J., Matthaeus, W. H., Goldstein, M. L., Plante, D. (1988). Test particle acceleration in turbulent reconnecting magnetic fields. J. Geophys. Res., 93(A12), 14383–14400. https://doi.org/10.1029/JA093iA12p14383

Bian, N. H., Kontar, E. P. (2013). Stochastic acceleration by multi-island contraction during turbulent magnetic reconnection. Phys. Rev. Lett., 110(15), 151101. https://doi.org/10.1103/PhysRevLett.110.151101

Biskamp, D., Welter, H. (1980). Coalescence of Magnetic Islands. Phys. Rev. Lett., 44(16), 1069–1072. https://doi.org/10.1103/PhysRevLett.44.1069

Biskamp, D. (2000). Magnetic Reconnection in Plasmas. New York: Cambridge University Press.222

Brizard, A. J., Chan, A. A. (1999). Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations. Phys. Plasmas, 6(12), 4548–4558. https://doi.org/10.1063/1.873742

Cassak, P. A., Drake, J. F. (2013). On phase diagrams of magnetic reconnection. Phys. Plasmas, 20(6), 061207. https://doi.org/10.1063/1.4811120

Chen, Y., Du, G. H., Zhao, D., Wu, Z., Liu, W., Wang, B., Ruan, G. P., Feng, S. W., Song, H. Q. (2016). Imaging a magnetic-breakout solar eruption. APJL, 820(2), L30. https://doi.org/10.3847/2041-8205/820/2/L37

Comisso, L., Soroni, L. (2018). Particle acceleration in relativistic plasma turbulence. Phys.Rev. Lett, 121, 255101. https://doi.org/10.1103/PhysRevLett.121.255101

Drake, J. F., Swisdak, M., Che, H., Shay, M. A. (2006). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443(7111), 553–556. https://doi.org/10.1038/nature05116

Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., André, M., Gao, J. B., Olshevsky, V., Eastwood, J. P., Retinò, A. (2017). Intermittent energy dissipation by turbulent reconnection. Geophys. Res. Lett., 44(1), 37–43. https://doi.org/10.1002/2016GL071787

Gan, W. Q., Wang, D. Y. (2016). Solar High-Energy Physics. The Science Publishing Company, 317.222

Gou, T. Y., Liu, R., Wang, Y. M., Liu, K., Zhuang, B., Chen, J., Zhang, Q. H., Liu, J. J. (2016). Stereoscopic observation of slipping reconnection in a double candle-flame-shaped solar flare. APJL, 821(2), L28. https://doi.org/10.3847/2041-8205/821/2/L28

Haines, M. G. (1986). Magnetic-field generation in laser fusion and hot-electron transport. Can. J. Phys., 64(8), 912–919. https://doi.org/10.1139/p86-160

Hoshino, M. (2012). Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys. Rev. Lett., 108(13), 135003. https://doi.org/10.1103/PhysRevLett.108.135003

Ji, H. T., Daughton, W. (2011). Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas, 18(11), 111207. https://doi.org/10.1063/1.3647505

Lazarian, A., Opher, M. (2009). A model of acceleration of anomalous cosmic rays by reconnection in the Heliosheath. Astrophys. J., 703(1), 8–21. https://doi.org/10.1088/0004-637X/703/1/8

Lin, J., Murphy, N. A., Shen, C. C., Raymond, J. C., Reeves, K. K., Zhong, J. Y., Wu, N., Li, Y. (2015). Review on current sheets in CME development: theories and observations. Space Sci. Rev., 194(1-4), 237–302. https://doi.org/10.1007/s11214-015-0209-0

Liu, Y. H., Hesse, M., Guo, F., Daughton, W., Li, H., Cassak, P. A., Shay, M. A. (2017). Why does steady-state magnetic reconnection have a maximum local rate of order 0. 1?. Phys. Rev. Lett., 118(8), 085101. https://doi.org/10.1103/PhysRevLett.118.085101

Mendoza, M., Boghosian, B. M., Herrmann, H. J., Succi, S. (2010). Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett., 105(1), 014502. https://doi.org/10.1103/PhysRevLett.105.014502

Li, Y., Lin, J. (2012). Acceleration of electrons and protons in reconnecting current sheets including single or multiple x-points. Sol. Phys., 279(1), 91–113. https://doi.org/10.1007/s11207-012-9956-1

Oka, M., Phan, T. D., Krucker, S., Fujimoto, M., Shinohara, I. (2010). Electron acceleration by multi-island coalescence. Astrophys. J., 714(1), 915–926. https://doi.org/10.1088/0004-637X/714/1/915

Raymond, J.C., Krucker, S., Lin, R.P., Petrosian, V. (2012). Observational Aspects of Particle Acceleration in Large Solar Flares. Space Sci.Rev., 173(1-4), 197–221. https://doi.org/10.1007/s11214-012-9897-x

Petrosian, V. (2012). Stochastic acceleration by turbulence. Space Sci. Rev., 173(1-4), 535–556. https://doi.org/10.1007/s11214-012-9900-6

Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang, H., … Lucek, E. (2013). Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nat. Commun., 4, 1466. https://doi.org/10.1038/ncomms2476

Song, H. Q., Chen, Y., Li, G., Kong, X. L., Feng, S. W. (2012). Coalescence of macroscopic magnetic islands and electron acceleration from STEREO observation. Phys. Rev. X, 2(2), 021015. https://doi.org/10.1103/PhysRevX.2.021015

Walker, D. N., Bowles, J. H., Amatucci, W. E., Holland, D. L., Chen J. (2004). The Harris magnetic field: A laboratory realization of the topology based on energy resonance. J. Geophys. Res., 109(A6), A06205

Wang, H. Y., Lu, Q. M., Hang, C., Wang, S. (2016). The mechanisms of electron acceleration during multiple X line magnetic reconnection with a guide field. Astrophys. J., 821(2), 84. https://doi.org/10.3847/0004-637X/821/2/84

Wang, H. Y., Lu, Q. M., Huang, C., Wang, S. (2017). Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field. Phys. Plasmas, 24(5), 052113. https://doi.org/10.1063/1.4982813

Wang, R. S., Lu, Q. M., Nakamura, R., Huang, C., Du, A. M., Guo, F., Teh, W., Wu, M. Y., Lu, S., Wang, S. (2016). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys., 12(3), 263–267. https://doi.org/10.1038/nphys3578

Wang, R. S., Nakamura, R., Lu, Q, M., Baumjohann, W., Ergun, R. E., Burch, J. L., Volwerk, M., Varsani, A., Nakamura, T., … Wang, S. (2017). Electron-scale quadrants of the hall magnetic field observed by the magnetospheric multiscale spacecraft during asymmetric reconnection. Phys. Rev. Lett., 118(17), 175101. https://doi.org/10.1103/PhysRevLett.118.175101

Yi, S. M., Jhang, H., Kwon, J. M. (2016). Gyrokinetic simulations of an electron temperature gradient turbulence driven current in tokamak plasmas. Phys. Plasmas, 23(10), 102514. https://doi.org/10.1063/1.4966206

Zhong, J. Y., Lin, J., Li, Y. T., Wang, X., Li, Y., Zhang, K., Yuan, D. W., Ping, Y. L., Wei, H. G., … Zhang, J. (2016). Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare. Astrophys. J. Suppl. Ser., 225(2), 30. https://doi.org/10.3847/0067-0049/225/2/30

Zong, Q. G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H., Liu, A. T., Vogiatzis, I., Glassmeier, K. H., … Reme, H. (2004). Cluster observations of earthward flowing plasmoid in the tail. Geophys. Res. Lett., 31(18), L18803. https://doi.org/10.1029/2004GL020692

[1]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[2]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[3]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[4]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[5]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[6]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[7]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics. doi: 10.26464/epp2020043

[8]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[9]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[10]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[11]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[12]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[13]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[14]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[15]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[16]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics. doi: 10.26464/epp2020045

[17]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[18]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[19]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[20]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi