Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

2019, 3(1): 69-84. doi: 10.26464/epp2019008


Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau


Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China


Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

Corresponding author: Yuan Gao,

Received Date: 2018-12-11
Web Publishing Date: 2019-01-01

In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed. In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson’s ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected. Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast. The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau. Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area. The positive correlation between crustal thickness and Poisson’s ratio is likely to be related to lower crust thickening. Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.

Key words: receiver functions, sedimentary layer, southeast margin of the Tibetan Plateau, crustal thickness, Poisson's ratio, Chuxiong-Simao Basin

Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bull. Seismol. Soc. Am., 81, 2504–2510

Bai, D. H., Unsworth, M. J., Meju, M. A., Ma, X. B., Teng, J. W., Kong, X. R., Sun, Y., Sun, J., Wang, L. F., .. Liu, M. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci., 3(5), 358–362.

Cassidy, J. F. (1992). Numerical experiments in broadband receiver function analysis. Bull. Seismol. Soc. Am., 82(3), 1453–1474

Cassidy, J. F. (1995). A comparison of the receiver structure beneath stations of the Canadian National Seismograph Network. Can. J. Earth Sci., 32(7), 938–951.

Cui, Z. Z., Lu, D. Y., Chen, J. P., Zhang, Z. Y., and Huang, L. Y. (1987). The deep structural and tectonic features of the crust in Panxi area. Acta Geophys. Sin., 30(6), 566–580

Deng, J. M., Jin, M. P., Zhao, J. B., Gao, Q., and Chen, J. (2014). Tectonic implications from the distribution map of the crust thickness and Poisson’s ratio in the Yunnan area. Earthq. Res. China, 30(4), 583–596.

Deng, Q. D., Zhang, P. Z., Ran, Y. K., Yang, X. P., Min, W., and Chen, L. C. (2003). Active tectonics and earthquake activities in China. Earth Sci. Front., 10(S1), 66–73.

Fu, Y. V., Gao, Y., Li, A. B., Li, L., and Chen, A. G. (2017). Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography. J. Geophys. Res. Solid Earth, 122(6), 4631–4644.

Hansen, S. M., and Schmandt, B. (2017). P and S wave receiver function imaging of subduction with scattering kernels. Geochem.,Geophys.,Geosys., 18(12), 4487–4502.

He, C. S., Wang, C. Y., and Wu, J. P. (2004). S-wave velocity structure inferred from re-ceiver function inversion in Tengchong volcanic area. Acta Seismol. Sin., 17(1), 12–19.

He, R. Z., Shang, X. F., Yu, C. Q., Zhang, H. J., and Van der Hilst, R. D. (2014). A unified map of Moho depth and V p/V s ratio of continental China by receiver function analysis. Geophys. J. Int., 199(3), 1910–1918.

Hu, J. F., Su, Y. J., Zhu, X. G., and Chen, Y. (2005). S-wave velocity and Poisson’s ratio structure of crust in Yunnan and its implication. Sci. China Ser. D:Earth Sci., 48(2), 210–218.

Ji, S. C., Wang, Q., and Salisbury, M. H. (2009). Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics, 463(1–4), 15–30.

Jordan, T. H., and Frazer, L. N. (1975). Crustal and upper mantle structure from Sp phases. J. Geophys. Res., 80(11), 1504–1518.

Kan, R. J., Hu, H. X., Zeng, R. S., Mooney, W. D., and McEvilly, T. V. (1986). Crustal structure of Yunnan Province, People's Republic of China, from seismic refraction profiles. Science, 234(4775), 433–437.

Kosarev, G., Kind, R., Sobolev, S. V., Yuan, X., Hanka, W., and Oreshin, S. (1999). Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283(5406), 1306–1309.

Langston, C. A. (1977). Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves. Bull. Seismol. Soc. Am., 67(3), 713–724

Langston, C. A. (1981). Evidence for the subducting lithosphere under southern Vancouver Island and western Oregon from teleseismic P wave conversions. J. Geophys. Res.:Solid Earth, 86(B5), 3857–3866.

Li, R., Tang, J., Dong, Z. Y., Xiao, Q. B., and Zhan, Y. (2014). Deep electrical conductivity structure of the southern area in Yunnan Province. Chinese J. Geophys.(in Chinese) , 57(4), 1111–1122.

Li, Y. H., Wu, Q. J., Zhang, R. Q., Tian, X. B., and Zeng, R. S. (2008). The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data. Phys. Earth Planet. Inter., 170(1–2), 134–146.

Li, Y. H., Wu, Q. J., Tian, X. B., Zhang, R. Q., Pan, J. T., and Zeng, R. S. (2009). Crustal structure in the Yunnan region determined by modeling receiver functions. Chinese J. Geophys., 52(1), 67–80

Li, Y. H., Gao, M. T., and Wu, Q. J. (2014). Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611, 51–60.

Liu, Q. Y., Van Der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., Qi, S. H., Wang, J., Huang, H., and Li, S. C. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci., 7(5), 361–365.

Phinney, R. A. (1964). Structure of the Earth’s crust from spectral behavior of long-period body waves. J. Geophys. Res., 69(14), 2997–3017.

Sheehan, A. F., Abers, G. A., Jones, C. H., and Lerner‐Lam, A. L. (1995). Crustal thickness variations across the Colorado Rocky Mountains from teleseismic receiver functions. J. Geophys. Res.:Solid Earth, 100(B10), 20391–20404.

Vinnik, L. P. (1977). Detection of waves converted from P to SV in the mantle. Phys. Earth Planet. Inter., 15(1), 39–45.

Wang, C. Y., and Gang, H. F. (2004). Crustal structure in Tengchong volcano-geothermal area, western Yunnan, China. Tectonophysics, 380(1–2), 69–87.

Wang, C. Y., Lou, H., Lü, Z. Y., Wu, J. P., Chang, L. J., Dai, S. G., You, H. C., Tang, F. T., Zhu, L. P., and Silver, P. (2008). S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow. Sci. China Ser. D:Earth Sci., 51(2), 263–274.

Wang, Q., and Gao, Y. (2014). Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau. Sci. China Earth Sci., 57(10), 2532–2542.

Wang, W. L., Wu, J. P., Fang, L. H., Lai, G. J., and Cai, Y. (2017). Crustal thickness and Poisson's ratio in southwest China based on data from dense seismic arrays. J. Geophys. Res.:Solid Earth, 122(9), 7219–7235.

Wen, X. Z., Ma, S. L., Xu, X. W., and He, Y. N. (2008). Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys. Earth Planet. Inter., 168(1–2), 16–36.

Wu, J. P., Ming, Y. H., and Wang, C. Y. (2001). S wave velocity structure beneath digital seismic stations of Yunnan province inferred from teleseismic receiver function modeling. Chinese J. Geophys.(in Chinese) , 44(2), 223–232.

Xiong, S. B., Zheng, Y., Yin, Z. X., Zeng, X. X., Quan, Y. L., and Sun, K. Z. (1993). The 2-D structure and it’s tectonic implications of the crust in the Lijiang-Pan-Zhihua-Zhehai area. Chinese J. Geophys., 36(4), 434–444

Xu, M. J., Wang, L. S., Liu, J. H., Zhong, K., Li, H., Hu, D. Z., and Xu, Z. (2006). Crust and uppermost mantle structure of the Ailaoshan-Red River fault from receiver function analysis. Sci. China Ser. D:Earth Sci., 49(10), 1043–1052.

Yeck, W. L., Sheehan, A. F., Anderson, M. L., Erslev, E. A., Miller, K. C., and Siddoway, C. S. (2014). Structure of the Bighorn Mountain region, Wyoming, from teleseismic receiver function analysis: Implications for the kinematics of Laramide shortening. J. Geophys. Res.:Solid Earth, 119(9), 7028–7042.

Yu, Y. Q., Song, J. G., Liu, K. H., and Gao, S. S. (2015). Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions. J. Geophys. Res.:Solid Earth, 120(5), 3208–3218.

Zelt, B. C., and Ellis, R. M. (1999). Receiver-function studies in the Trans-Hudson orogen, Saskatchewan. Can. J. Earth Sci., 36(4), 585–603.

Zhang, H. S., Tian, X. B., and Teng, J. W. (2009). Estimation of the crustal Vp/Vs Ratio with dipping Moho from receiver functions. Chinese J. Geophys.(in Chinese) , 52(3), 585–595.

Zhang, X., and Wang, Y. H. (2009). Crustal and upper mantle velocity structure in Yunnan, Southwest China. Tectonophysics, 471(3–4), 171–185.

Zhang, X. M., Hu, J. F., Hu, Y. L., Yang, H. Y., Chen, J., Peng, H. C., and Wen, L. M. (2011). The S-wave velocity structure in the crust and upper mantle as well as the tectonic setting of strong earthquake beneath Yunnan region. Chinese J. Geophys.(in Chinese) , 54(5), 1222–1232.

Zhu, L. P., and Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res.:Solid Earth, 105(B2), 2969–2980.

Zhang, Z. J., Bai, Z. M., Wang, C. Y., Teng, J. W., Lü, Q. T., Li, J. L., Liu, Y. F. and Liu, Z. K. (2005). The crustal structure under Sanjiang and its dynamic implications: Revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan. Sci. China Earth Sci., 48(9), 1329–1336.


Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics. doi: 10.26464/epp2019044


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005


YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038


JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017


RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics. doi: 10.26464/epp2019045


YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006


ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007


Jing Huang, Meng Zhou, HuiMin Li, XiaoHua Deng, Jiang Liu, ShiYong Huang, 2019: Small-scale dipolarization fronts in the Earth′s magnetotail, Earth and Planetary Physics, 3, 358-364. doi: 10.26464/epp2019036


Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau

ZiQi Zhang, Yuan Gao