Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011

2019, 3(2): 93-101. doi: 10.26464/epp2019011

ATMOSPHERIC PHYSICS

Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets

1. 

Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, 210044 China

2. 

Chinese Academy of Meteorological Sciences, Beijing, 100081 China

3. 

Guangdong Ocean University, Zhanjiang, 524088 China

4. 

The Global Environment and Natural Resources Institute (GENRI), College of Science, George Mason University, Fairfax, 22030 USA

5. 

Center for Atmospheric Science, Hampton University, Hampton, 23668 USA

Corresponding author: Dong Guo, dongguo@nuist.edu.cnChunHua Shi, shi@nuist.edu.cn

Received Date: 2018-11-29
Web Publishing Date: 2019-03-01

Using four satellite data sets (TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone (TCO) and its zonal deviation (TCO*), and reveal the vertical structure of the Ozone Low (OV) over the Asian continent. Our principal findings are: (1) The TCO over the Asian continent reaches its maximum in the spring and its minimum in the autumn. The Ozone Low exists from May to September. (2) The Ozone Low has two negative cores, located in the lower and the upper stratosphere. The lower core is near 30 hPa in the winter and 70 hPa in the other seasons. The upper core varies from 10 hPa to 1 hPa among the four seasons. (3) The position of the Ozone Low in the lower and the upper stratosphere over the Asian continent shows seasonal variability.

Key words: Ozone Low, Double core, Asian continent, Satellite data

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 12). New York: Academic Press.222

Bian, J. C., Wang, G. C., Chen, H. B., Qi, D. L., Lü, D. R., and Zhou, X. J. (2006). Ozone mini-hole occurring over the Tibetan Plateau in December 2003. Chin. Sci. Bull., 51(7), 885–888. https://doi.org/10.1007/s11434-006-0885-y

Bian, J. C., Yan, R. C., Chen, H. B., Lü, D. R., and Massie, S. T. (2011). Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations. Adv. Atmos. Sci., 28(6), 1318–1325. https://doi.org/10.1007/s00376–011-0174–9

Farman, J. C., Gardiner, B. G., and Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016), 207–210. https://doi.org/10.1038/315207a0

Frederick, J. E., Cebula, R. P., and Heath, D. F. (1986). Instrument characterization for the detection of long-term changes in stratospheric ozone: an analysis of the SBUY/2 radiometer. J. Atmos. Oceanic Technol., 3(3), 472–480. https://doi.org/10.1175/1520-0426(1986)003<0472:ICFTDO>2.0.CO;2

Fu, C., Li, W., and Zhou, X. (1997). Simulation of the Formation of Ozone Low over Tibetan Plateau in Summer (pp. 274-285). Beijing: Meteorological Press.222

Fuhrer, J., and Booker, F. (2003). Ecological issues related to ozone: agricultural issues. Environ. Int., 29(2-3), 141–154. https://doi.org/10.1016/S0160-4120(02)00157-5

Guo, D., Wang, P. X., Zhou, X. J., Liu, Y., and Li, W. L. (2012). Dynamic effects of the South Asian high on the ozone valley over the Tibetan Plateau. Acta Meteor. Sin., 26(2), 216–228. https://doi.org/10.1007/s13351-012-0207-2

Guo, D., Su, Y. C., Shi, C. H., Xu, J. J., and Powell, Jr. A. M. (2015). Double core of ozone valley over the Tibetan Plateau and its possible Mechanisms. J. Atmos. Solar-Terr. Phys., 130–131. https://doi.org/10.1016/j.jastp.2015.05.018

Guo, D., Su, Y. C., Zhou, X. J., Xu, J. J., Shi, C. H., Liu, Y., Li, W. L., and Li, Z. K. (2017a). Evaluation of the trend uncertainty in summer ozone valley over the Tibetan Plateau in three reanalysis datasets. J. Meteor. Res., 31(2), 431–437. https://doi.org/10.1007/s13351-017-6058-x

Guo, D., Xu, J. J., Su, Y. C., Shi, C. H., Liu, Y., and Li, W. L. (2017b). Comparison of vertical structure and formation mechanism of summer ozone valley over the Tibetan Plateau and North America. Trans. Atmos. Sci. (in Chinese) , 40(3), 412–417. https://doi.org/10.13878/j.cnki.dqkxxb.20160315001

Heath, D. F., Krueger, A. J., Roeder, H. R., and Henderson, B. D. (1975). The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for NIMBUS G. Opt. Eng., 14(4), 144323. https://doi.org/10.1117/12.7971839

Hilsenrath, E., Cebula, R. P., DeLand, M. T., Laamann, K., Taylor, S., Wellemeyer, C., and Bhartia, P. K. (1995). Calibration of the NOAA 11 solar backscatter ultraviolet (SBUV/2) ozone data set from 1989 to 1993 using in-flight calibration data and SSBUV. J. Geophys. Res.: Atmos., 100(D1), 1351–1366. https://doi.org/10.1029/94JD02611

Levelt, P. F., Van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., De Vries, J., Stammes, P., Lundell, J. O. V., and Saari, H. (2006). The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens., 44(5), 1093–1101. https://doi.org/10.1109/TGRS.2006.872333

Li, Z. K., Qin, H., Guo, D., Zhou, S. W., Huang, Y., Su, Y. C., Wang, L. W., and Sun, Y. (2017). Impact of ozone valley over the Tibetan Plateau on the South Asian high in CAM5. Adv. Meteor., 2017, 9383495. https://doi.org/10.1155/2017/9383495

Liu, Y., Li, W. L., Zhou, X. J., and He, J. H. (2003). Mechanism of formation of the ozone valley over the Tibetan Plateau in summer-transport and chemical process of ozone. Adv. Atmos. Sci., 20(1), 103–109. https://doi.org/10.1007/BF03342054

Liu, Y., Wang, Y., Liu, X., Cai, Z. N., and Chance, K. (2009). Tibetan middle tropospheric ozone minimum in June discovered from GOME observations. Geophys. Res. Lett., 36(5), L05814. https://doi.org/10.1029/2008GL037056

Liu, Y., Li, W. L., and Zhou, X. J. (2010). A possible effect of heterogeneous reactions on the formation of the ozone valley over the Tibetan Plateau. Acta Meteor. Sin. (in Chinese) , 68(6), 836–846. https://doi.org/10.11676/qxxb2010.079

McPeters, R. D., and Labow, G. J. (1996). An assessment of the accuracy of 14.5 years of Nimbus 7 TOMS version 7 ozone data by comparison with the Dobson network. Geophys. Res. Lett., 23(25), 3695–3698. https://doi.org/10.1029/96GL03539

McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer, C. G., Seftor, C. J., Jaross, G., Torres, O., Moy, L., … Cebula, R. P. (1998). Earth probe total ozone mapping spectrometer (TOMS): data products user's guide. Maryland: NASA.222

Molina, M. J., and Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: Chlorine atom- catalysed destruction of ozone. Nature, 249(5460), 820–812. https://doi.org/10.1038/249810a0

Moore, G. W. K., and Semple, J. L. (2005). A Tibetan Taylor Cap and a halo of stratospheric ozone over the Himalaya. Geophys. Res. Lett., 32(21), L21810. https://doi.org/10.1029/2005GL024186

Nazaryan, H., McCormick, M. P., and Russell Ⅲ, J. M. (2005). New studies of SAGE Ⅱ and HALOE ozone profile and long-term change comparisons. J. Geophys. Res.: Atmos., 110(D9), D09305. https://doi.org/10.1029/2004JD005425

Newman, P. A., Gleason, J. G., McPeters, R. D., and Stolarski, R. S. (1997). Anomalously low ozone over the Arctic. Geophys. Res. Lett., 24(22), 2689–2692. https://doi.org/10.1029/97GL52831

Qin, H., Guo, D., Shi, C. H., Li, Z. K., Zhou, S. W., Huang, Y., Su, Y. C., and Wang, L. W. (2018). The interaction between variations of South Asia high and ozone in the adjacent regions. Chin. J. Atmos. Sci. (in Chinese) , 42(2), 421–434. https://doi.org/10.3878/j.issn.1006-9895.1710.17159

Russell Ⅲ, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Hesketh, W. D., Cicerone, R. J., Tuck, A. F., Frederick, J. E., Harries, J. E., and Crutzen, P. J. (1993). The halogen occultation experiment. J. Geophys. Res.: Atmos., 98(D6), 10777–10797. https://doi.org/10.1029/93JD00799

Russell Ⅲ, J. M., Gordley, L. L., Deaver, L. E., Thompson, R. E., and Park, J. H. (1994). An overview of the halogen occultation experiment (HALOE) and preliminary results. Adv. Space Res., 14(9), 13–20. https://doi.org/10.1016/0273-1177(94)90110-4

Shi, C. H., Zhang, C. X., and Guo, D. (2017). Comparison of electrochemical concentration cell ozonesonde and microwave limb sounder satellite remote sensing ozone profiles for the center of the South Asian high. Remote Sens., 9(10), 1012. https://doi.org/10.3390/rs9101012

Tian, W. S., Chipperfield, M., and Huang, Q. (2008). Effects of the Tibetan Plateau on total column ozone distribution. Tellus B, 60(4), 622–635. https://doi.org/10.1111/j.1600-0889.2008.00338.x

Tobo, Y., Iwasaka, Y., Zhang, D. Z., Shi, G. Y., Kim, Y. S., Tamura, K., and Ohashi, T. (2008). Summertime " ozone valley” over the Tibetan Plateau derived from ozonesondes and EP/TOMS data. Geophys. Res. Lett., 35(16), L16801. https://doi.org/10.1029/2008GL034341

Van der Leun, J. C., Tang, X., and Tevini, M. (1995). Environmental effects of ozone depletion: 1994 assessment. Ambio, 24(3), 138–142

Wang, W. G., Fan, W. X., Wu, J., Xie, Y. Q., Yuan, M., Chen, X. M., Yang, Q., and Wang, H. Y. (2006). A study of spatial-temporal evolvement of the global cross-tropopause ozone mass flux. Chin. J. Geophys., 49(6), 1451–1466. https://doi.org/10.1002/cjg2.972

Waters, J. W., Read, W. G., Froidevaux, L., Jarnot, R. F., Cofield, R. E., Flower, D. A., Lau, G. K., Picketta, H. M., Santee, M. L., … Filipiak, M. J. (1999). The UARS and EOS microwave limb sounder (MLS) experiments. J. Atmos. Sci., 56(2), 194–218. https://doi.org/10.1175/1520-0469(1999)056<0194:TUAEML>2.0.CO;2

Waters, J. W., Froidevaux, L., Jarnot, R. F., Read, W. G., Pickett, H. M., Harwood, R. S., Cofield, R. E., Filipiak, M. J., Flower, D. A., … Wu, D.L. (2004). An overview of the EOS MLS experiment, Tech. Rep.D-15745 Version 2.0, Jet Propul. Lab., Pasadena, Calif.222

Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., … Dodge, R. (2006). The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44(5), 1075–1092. https://doi.org/10.1109/TGRS.2006.873771

Xie, F., Li, J. P., Tian, W. S., Fu, Q., Jin, F. F., Hu, Y. Y., Zhang, J. K., Wang, W. K., Sun, C., … Ding, R. Q. (2016). A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11(12), 124026. https://doi.org/10.1088/1748-9326/11/12/124026

Yan, R. C., Bian, J. C., and Fan, Q. J. (2011). The impact of the South Asia high bimodality on the chemical composition of the upper troposphere and lower stratosphere. Atmos. Oceanic Sci. Lett., 4(4), 229–234. https://doi.org/10.1080/16742834.2011.11446934

Yan, X. L., Zheng, X. D., Zhou, X. J., Vömel, H., Song, J. Y., Li, W., Ma, Y. H., and Zhang, Y. (2015). Validation of Aura Microwave Limb Sounder water vapor and ozone profiles over the Tibetan Plateau and its adjacent region during boreal summer. Sci. China Earth Sci., 58(4), 589–603. https://doi.org/10.1007/s11430-014-5014-1

Ye, Z. J., and Xu, Y. F. (2003). Climate characteristics of ozone over Tibetan Plateau. J. Geophys. Res., 108(D20), 4654. https://doi.org/10.1029/2002JD003139

Zhang, J. K., Tian, W. S., Xie, F., Tian, H. Y., Luo, J. L., Zhang, J., and Dhomse, S. (2014). Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring. Tellus B, 66(1), 23415. https://doi.org/10.3402/tellusb.v66.23415

Zhang, J. K., Tian, W. S., Xie, F., Chipperfield, M. P., Feng, W. H., Son, S. W., Abraham, N. L., Archibald, A. T., Bekki, S., … Zeng, G. (2018). Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun., 9(1), 206. https://doi.org/10.1038/s41467-017-02565-2

Zhou, S. W., and Zhang, R. H. (2005). Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion. Geophys. Res. Lett., 32(18), L18705. https://doi.org/10.1029/2005gl023496

Zhou, X. J., and Luo, C. (1994). Ozone valley over Tibetan Plateau. Acta Meteor. Sin., 8(4), 505–506

Zou, H. (1996). Seasonal variation and trends of TOMS ozone over Tibet. Geophys. Res. Lett., 23(9), 1029–1032. https://doi.org/10.1029/96GL00767

[1]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[2]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[3]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[4]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[5]

Xian Chen, Zhong Zhong, YiJia Hu, Shi Zhong, Wei Lu, Jing Jiang, 2019: Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system, Earth and Planetary Physics, 3, 147-156. doi: 10.26464/epp2019018

[6]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[7]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[8]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[9]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[10]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[11]

JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045

[12]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[13]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[14]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[15]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

[16]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[17]

Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

[18]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics. doi: 10.26464/epp2019040

[19]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[20]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets

Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li