Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Liu, D., Yao, Z. H., Wei, Y., Rong, Z. J., Shan, L. C., Arnaud, S., Jared, E., Wei, H. Y., and Wan, W. X. (2020). Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations. Earth Planet. Phys., 4(1), 51–61.doi: 10.26464/epp2020002

2020, 4(1): 51-61. doi: 10.26464/epp2020002


Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


Laboratoire de Physique Atmospherique et Planetaire, STAR institute, Universite de Liege, Liege, Belgium


NASA Goddard Space Flight Center, Greenbelt, Maryland, USA


Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, California, USA

Corresponding author: Yong Wei,

Received Date: 2019-10-15
Web Publishing Date: 2020-01-01

Proton cyclotron waves (PCWs) can be generated by ion pickup of Martian exospheric particles in the solar wind. The solar wind ion pickup process is highly dependent on the “IMF cone angle” — the angle between the solar wind velocity and the interplanetary magnetic field (IMF), which also plays an important role in the generation of PCWs. Using data from 2.15 Martian years of magnetic field measurements collected by the Mars Atmosphere and Volatile Evolution (MAVEN) mission, we have identified 3307 upstream PCW events. Their event number distribution decreases exponentially with their duration. A statistical investigation of the effects of IMF cone angle on the amplitudes and occurrence rates of PCWs reveals a slight tendency of PCWs’ amplitudes to decrease with increasing IMF cone angle. The relationship between the amplitude and IMF cone angle is weak, with a correlation coefficient r = –0.3. We also investigated the influence of IMF cone angle on the occurrence rate of PCWs and found that their occurrence rate is particularly high for intermediate IMF cone angles (~18°–42°) even though highly oblique IMF orientation occurs most frequently in the upstream region of the Martian bow shock. We also conclude that these variabilities are not artefacts of temporal coverage biases in MAVEN sampling. Our results demonstrate that whereas IMF cone angle strongly influences the occurrence of PCWs, IMF cone angle may also weakly modulate their amplitudes in the upstream region of Mars.

Key words: ion pickup, proton cyclotron waves, Martian exosphere

Barabash, S., Dubinin, E., Pissarenko, N., Lundin, R., and Russell, C. T. (1991). Picked-up protons near Mars: PHOBOS observations. Geophys. Res. Lett., 18(10), 1805–1808.

Bertucci, C., Romanelli, N., Chaufray, J. Y., Gomez, D., Mazelle, C., Delva, M., Modolo, R., González-Galindo, F., and Brain, D. A. (2013). Temporal variability of waves at the proton cyclotron frequency upstream from Mars: implications for Mars distant hydrogen exosphere. Geophys. Res. Lett., 40(15), 3809–3813.

Blanco-Cano, X., Russell, C. T., Huddleston, D. E., and Strangeway, R. J. (2001). Ion cyclotron waves near Io. Planet. Space Sci., 49(10-11), 1125–1136.

Brain, D. A., Bagenal, F., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mazelle, C., Mitchell, D. L., and Ness, N. F. (2002). Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res., 107(A6), 1076.

Brinca, A. L., and Tsurutani, B. T. (1989). Influence of multiple ion species on low-frequency electromagnetic wave instabilities. J. Geophys. Res., 94(A10), 13565–13569.

Brinca, A. L. (1991). Cometary linear instabilities: from profusion to perspective. In A. Johnstone (Ed.), Cometary Plasma Processes (pp. 211-221). Washington, DC: American Geophysical Union.

Connerney, J. E. P., Espley, J. R., DiBraccio, G. A., Gruesbeck, J. R., Oliversen, R. J., Mitchell, D. L., Halekas, J., Mazelle, C., Brain, D., and Jakosky, B. M. (2015a). First results of the MAVEN magnetic field investigation. Geophys. Res. Lett., 42(21), 8819–8827.

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015b). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1-4), 257–291.

Cowee, M. M., Winske, D., Russell, C. T., and Strangeway, R. J. (2007). 1D hybrid simulations of planetary ion-pickup: energy partition. Geophys. Res. Lett., 34(2), L02113.

Cowee, M. M., Gary, S. P., and Wei, H. Y. (2012). Pickup ions and ion cyclotron wave amplitudes upstream of Mars: first results from the 1D hybrid simulation. Geophys. Res. Lett., 39(8), L08104.

Delva, M., Zhang, T. L., Volwerk, M., Magnes, W., Russell, C. T., and Wei, H. Y. (2008). First upstream proton cyclotron wave observations at Venus. Geophys. Res. Lett., 35(3), L03105.

Delva, M., Mazelle, C., Bertucci, C., Volwerk, M., Vörös, Z., and Zhang, T. L. (2011). Proton cyclotron wave generation mechanisms upstream of Venus. J. Geophys. Res., 116(A2), A02318.

Gary, S. P., Smith, C. W., Lee, M. A., Goldstein, M. L., and Forslund, D. W. (1984). Electromagnetic ion beam instabilities. Phys. Fluids, 27(7), 1852–1862.

Gary, S. P., and Madland, C. D. (1988). Electromagnetic ion instabilities in a cometary environment. J. Geophys. Res., 93(A1), 235–241.

Gary, S. P., Madland, C. D., Omidi, N., and Winske, D. (1988). Computer simulations of two-pickup-ion instabilities in a cometary environment. J. Geophys. Res., 93(A9), 9584–9596.

Gary, S. P., Akimoto, K., and Winske, D. (1989). Computer simulations of cometary-ion/ion instabilities and wave growth. J. Geophys. Res., 94(A4), 3513–3525.

Gary, S. P. (1993). Theory of Space Plasma Microinstabilities. Cambridge, UK: Cambridge University Press.222

Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., Mitchell, D. L., Lin, R. P., and Jakosky, B. M. (2015). The solar wind ion analyzer for MAVEN. Space Sci. Rev., 195(1-4), 125–151.

Huddleston, D. E., Strangeway, R. J., Warnecke, J., Russell, C. T., and Kivelson, M. G. (1998). Ion cyclotron waves in the Io torus: wave dispersion, free energy analysis, and SO2+ source rate estimates. J. Geophys. Res., 103(E9), 19887–19899.

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., … Brain, D. (2015). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev., 195(1-4), 3–48.

Leisner, J. S., Russell, C. T., Dougherty, M. K., Blanco-Cano, X., Strangeway, R. J., and Bertucci, C. (2006). Ion cyclotron waves in Saturn’s E ring: initial Cassini observations. Geophys. Res. Lett., 33(11), L11101.

Mazelle, C., and Neubauer, F. M. (1993). Discrete wave packets at the proton cyclotron frequency at Comet P/Halley. Geophys. Res. Lett., 20(2), 153–156.

Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuña, M. H., Baumgärtel, K., Bertucci, C., Brain, D. A., Brecht, S. H., … Slavin, J. (2004). Bow shock and upstream phenomena at Mars. Space Sci. Rev., 111(1-2), 115–181.

Means, J. D. (1972). Use of the three-dimensional covariance matrix in analyzing the polarization properties of plane waves. J. Geophys. Res., 77(28), 5551–5559.

Meeks, Z., Simon, S. and Kabanovic, S. (2016). A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn. Planet. Space Sci., 129, 47–60.

Rankin, D., and Kurtz, R. (1970). Statistical study of micropulsation polarizations. J. Geophys. Res., 75(28), 5444–5458.

Romanelli, N., Bertucci, C., Gómez, D., Mazelle, C., and Delva, M. (2013). Proton cyclotron waves upstream from Mars: observations from Mars global surveyor. Planet. Space Sci., 76, 1–9.

Romanelli, N., Mazelle, C., Chaufray, J. Y., Meziane, K., Shan, L., Ruhunusiri, S., Connerney, J. E. P., Espley, J. R., Eparvier, F., … Jakosky, B. M. (2016). Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: associated variability of the Martian upper atmosphere. J. Geophys. Res., 121(11), 11113–11128.

Russell, C. T., Luhmann, J. G., Schwingenschuh, K., Riedler, W., and Yeroshenko, Y. (1990). Upstream waves at Mars: Phobos observations. Geophys. Res. Lett., 17(6), 897–900.

Russell, C. T., Wei, H. Y., Cowee, M. M., Neubauer, F. M., and Dougherty, M. K. (2016). Ion cyclotron waves at Titan. J. Geophys. Res., 121(3), 2095–2103.

Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci., 54(4), 357–369.

Tsurutani, B. T., and Smith, E. J. (1986). Strong hydromagnetic turbulence associated with comet Giacobini-Zinner. Geophys. Res. Lett., 13(3), 259–262.

Tsurutani, B. T., Thorne, R. M., Smith, E. J., Gosling, J. T., and Matsumoto, H. (1987). Steepened magnetosonic waves at comet Giacobini-Zinner. J. Geophys. Res., 92(A10), 11074–11082.

Tsurutani, B. T., Page, D. E., Smith, E. J., Goldstein, B. E., Brinca, A. L., Thorne, R. M., Matsumoto, H., Richardson, I. G., and Sanderson, T. R. (1989). Low-frequency plasma waves and ion pitch angle scattering at large distances (3.5×105 km) from Giacobini-Zinner: interplanetary magnetic field α dependences. J. Geophys. Res., 94(A1), 18–28.

Tsurutani, B. T. (1991). Comets: a laboratory for plasma waves and instabilities. In A. Johnstone (Ed.), Cometary Plasma Processes (pp. 189-209). Washington, DC: American Geophysical Union.

Wei, H. Y., and Russell, C. T. (2006). Proton cyclotron waves at Mars: exosphere structure and evidence for a fast neutral disk. Geophys. Res. Lett., 33(23), L23103.

Wei, H. Y., Russell, C. T., Zhang, T. L., and Blanco-Cano, X. (2011). Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planet. Space Sci., 59(10), 1039–1047.

Wei, H. Y., Cowee, M. M., Russell, C. T., and Leinweber, H. K. (2014). Ion cyclotron waves at Mars: occurrence and wave properties. J. Geophys. Res., 119(7), 5244–5258.

Winske, D., and Gary, S. P. (1986). Electromagnetic instabilities driven by cool heavy ion beams. J. Geophys. Res., 91(A6), 6825–6832.

Wu, C. S., and Davidson, R. C. (1972). Electromagnetic instabilities produced by neutral–particle ionization in interplanetary space. J. Geophys. Res., 77(28), 5399–5406.

Wu, C. S., and Hartle, R. E. (1974). Further remarks on plasma instabilities produced by ions born in the solar wind. J. Geophys. Res., 79(1), 283–285.

Yamauchi, M., Hara, T., Lundin, R., Dubinin, E., Fedorov, A., Sauvaud, J. A., Frahm, R. A., Ramstad, R., Futaana, Y., …Barabash, S. (2015). Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere. Planet. Space Sci., 119, 54–61.

Yoon, P. H., and Wu, C. S. (1991). Ion pickup by the solar wind via wave-particle interactions. In A. Johnstone (Ed.), Cometary Plasma Processes (pp. 241-258). Washington, DC: American Geophysical Union.

Zhang M. H. G., Luhmann, J. G., Nagy, A. F., Spreiter, J. R., and Stahara, S. S. (1993). Oxygen ionization rates at Mars and Venus: relative contributions of impact ionization and charge exchange. J. Geophys. Res., 98(E2), 3311–3318.


Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003


Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037


LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004


Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020


MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010


Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006


Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025


FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049


LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009


YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037


MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029


Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036


ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics. doi: 10.26464/epp2020069


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045


XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035


WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023


ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics. doi: 10.26464/epp2020059

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan