Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Xu, Q., Xu, X. J., Chang, Q., Xu, J. Y., Wang, J., and Ye, Y. D. (2020). An ICME impact on the Martian hydrogen corona. Earth Planet. Phys., 4(1), 38–44.. http://doi.org/10.26464/epp2020006

2020, 4(1): 38-44. doi: 10.26464/epp2020006

PLANETARY SCIENCES

An ICME impact on the Martian hydrogen corona

State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China

Corresponding author: XiaoJun Xu, xjxu@must.edu.mo

Received Date: 2019-10-11
Web Publishing Date: 2020-01-21

The Martian hydrogen exosphere extends out of the bow shock, forming a "hydrogen corona". The solar wind interacts directly with the hydrogen corona. During an ICME event on 7 March 2015, the SWIA instrument onboard Mars Atmosphere and Volatile Evolution mission (MAVEN) observed that the pick-up H+ fluxes in upstream solar wind were enhanced. Also increased were the penetrating H+ fluxes in the Martian atmosphere. Quantitatively, these penetrating H+ fluxes cannot increase by a factor of 5 simply due to a factor of 3 increase in the solar wind density, suggesting that the increased abundance of exospheric hydrogen upstream of the bow shock was a consequence of the passage of the ICME. A denser outer hydrogen corona at high altitudes suggests that the expansion of the neutral atmosphere was caused by the ICME. The excited and heated hydrogen exosphere probably indicates an elevated hydrogen escape rate during an ICME.

Key words: Mars, hydrogen corona, ICME

Anderson, Jr. D. E., and Hord, C. W. (1971). Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman-alpha data. J. Geophys. Res., 76(28), 6666–6673. https://doi.org/10.1029/JA076i028p06666

Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., and Vaisberg, O. (2011). The induced magnetospheres of Mars, Venus, and Titan. Space Sci. Rev., 162(1-4), 113–171. https://doi.org/10.1007/s11214-011-9845-1

Bhattacharyya, D., Clarke, J. T., Bertaux, J. L., Chaufray, J. Y., and Mayyasi, M. (2015). A strong seasonal dependence in the Martian hydrogen exosphere. Geophys. Res. Lett., 42(20), 8678–8685. https://doi.org/10.1002/2015GL065804

Chaffin, M. S., Chaufray, J. Y., Deighan, J., Schneider, N. M., McClintock, W. E., Stewart, A. I. F., Thiemann, E., Clarke, J. T., Holsclaw, G. M., … Jakosky, B. M. (2015). Three-dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophys. Res. Lett., 42(21), 9001–9008. https://doi.org/10.1002/2015GL065287

Chaffin, M. S., Deighan, J., Schneider, N. M., and Stewart, A. I. F. (2017). Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci., 10(3), 174–178. https://doi.org/10.1038/ngeo2887

Chaufray, J. Y., Bertaux, J. L., Leblanc, F., and Quémerais, E. (2008). Observation of the hydrogen corona with SPICAM on Mars Express. Icarus, 195(2), 598–613. https://doi.org/10.1016/j.icarus.2008.01.009

Chaufray, J. Y., Gonzalez-Galindo, F., Forget, F., Lopez-Valverde, M. A., Leblanc, F., Modolo, R., and Hess, S. (2015). Variability of the hydrogen in the Martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling. Icarus, 245, 282–294. https://doi.org/10.1016/j.icarus.2014.08.038

Curry, S. M., Luhmann, J. G., Ma, Y. J., Dong, C. F., Brain, D., Leblanc, F., Modolo, R., Dong, Y., McFadden, J., … Jakosky, B. (2015). Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data-based models. Geophys. Res. Lett., 42(21), 9095–9102. https://doi.org/10.1002/2015GL065304

Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., Mitchell, D. L., Lin, R. P., and Jakosky, B. M. (2015a). The solar wind ion analyzer for MAVEN. Space Sci. Rev., 195(1-4), 125–151. https://doi.org/10.1007/s11214-013-0029-z

Halekas, J. S., Lillis, R. J., Mitchell, D. L., Cravens, T. E., Mazelle, C., Connerney, J. E. P., Espley, J. R., Mahaffy, P. R., Benna, M., … Ruhunusiri, S. (2015b). Maven observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophys. Res. Lett., 42(21), 8901–8909. https://doi.org/10.1002/2015GL064693

Halekas, J. S. (2017). Seasonal variability of the hydrogen exosphere of Mars. J. Geophys. Res.: Planets, 122(5), 901–911. https://doi.org/10.1002/2017JE005306

Harada, Y., Gurnett, D. A., Kopf, A. J., Halekas, J. S., Ruhunusiri, S., DiBraccio, G. A., Espley, J. D., and Brain, A. (2018). MARSIS observations of the Martian nightside ionosphere during the September 2017 solar event. Geophys. Res. Lett., 45(16), 7960–7967. https://doi.org/10.1002/2018GL077622

Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., McCleese, D. J., Piqueux, S., Shirley, J. H., and Schofield, J. T. (2018). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nat. Astron., 2(2), 126–132. https://doi.org/10.1038/s41550-017-0353-4

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., Connerney, J., Eparvier, F., Ergun, R., Halekas, J., Larson, D., Mahaffy, P., … Yelle, R. (2015a). Maven observations of the response of Mars to an interplanetary coronal mass ejection. Science, 350(6261), aad0210. https://doi.org/10.1126/science.aad0210

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson L., … Zurek, R. (2015b). The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev., 195(1-4), 3–48. https://doi.org/10.1007/s11214-015-0139-x

Jakosky, B. M., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., Halekas, J., Leblanc, F., Lillis, R., … Zurek, R. (2018). Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 315, 146–157. https://doi.org/10.1016/j.icarus.2018.05.030

Kallio, E., Luhmann, J. G., and Barabash, S. (1997). Charge exchange near Mars: The solar wind absorption and energetic neutral atom production. J. Geophys. Res.: Space Phys., 102(A10), 22183–22197. https://doi.org/10.1029/97JA01662

Lee, C. O., Hara, T., Halekas, J. S., Thiemann, E., Chamberlin, P., Eparvier, F., Lillis, R. J., Larson, D. E., Dunn, P. A., … Jakosky, B. M. (2017). MAVEN observations of the solar cycle 24 space weather conditions at Mars. J. Geophys. Res.: Space Phys., 122(3), 2768–2794. https://doi.org/10.1002/2016JA023495

Lindsay, B. G., Yu, W. S., and Stebbings, R. F. (2005). Cross sections for charge-changing processes involving kilo-electron-volt H and H+ with CO and CO2. Phys. Rev. A, 71(3), 032705. https://doi.org/10.1103/PhysRevA.71.032705

Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U., and Skoug, R. (2005). Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 "Halloween Storms". Geophys. Res. Lett., 32(12), L12S02. https://doi.org/10.1029/2004GL021467

Mayyasi, M., Bhattacharyya, D., Clarke, J., Catalano, A., Benna, M., Mahaffy, P., Thiemann, E., Lee, C. O., Deighan, J., … Jakosky, B. (2018). Significant space weather impact on the escape of hydrogen from Mars. Geophys. Res. Lett., 45(17), 8844–8852. https://doi.org/10.1029/2018GL077727

McElroy, M. B., and Donahue, T. M. (1972). Stability of the Martian atmosphere. Science, 177(4053), 986–988. https://doi.org/10.1126/science.177.4053.986

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., Dunn, P. A., Mitchell, D. L., Thiemann, E. M. B., … Jakosky, B. M. (2017). MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. J. Geophys. Res.: Space Phys., 122(3), 3689–3706. https://doi.org/10.1002/2016JA023371

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Thiemann, E. M. B., Connerney, J. E. P., … Jakosky, B. M. (2018). Seasonal variability of neutral escape from Mars as derived from MAVEN pickup ion observations. J. Geophys. Res.: Planets, 123(5), 1192–1202. https://doi.org/10.1029/2018JE005560

Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci., 54(4), 357–369. https://doi.org/10.1016/j.pss.2006.01.003

Xu, Q., Xu, X. J., Chang, Q., Rong, Z. J., Wang, J., Xu, J. Y., and Zhang, T. L. (2019). Observations of the Venus dramatic response to an extremely strong Interplanetary Coronal Mass Ejection. Astrophys. J., 876(1), 84. https://doi.org/10.3847/1538-4357/ab14e1

[1]

D. Singh, S. Uttam, 2022: Thermal Inertia at the MSL and InSight Mission Sites on Mars, Earth and Planetary Physics. doi: 10.26464/epp2022004

[2]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[3]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[4]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[5]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[6]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[7]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[8]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[9]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[10]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[11]

Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005

[12]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[13]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[14]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

[15]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[16]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[17]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[18]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[19]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[20]

Franco, A. M.S., Echer, E., Bolzan, M. J. A., and Fraenz, M., 2022: Study of Mars Magnetosheath Fluctuations using the Kurtosis Technique: Mars Express Observations, Earth and Planetary Physics. doi: 10.26464/epp2022006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

An ICME impact on the Martian hydrogen corona

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye