Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Xiao, S. D., Wu, M. Y., Wang, G. Q., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020). Turbulence in the near-Venusian space: Venus Express observations. Earth Planet. Phys., 4(1), 82–87..

2020, 4(1): 82-87. doi: 10.26464/epp2020012

Turbulence in the near-Venusian space: Venus Express observations


Harbin Institute of Technology, Shenzhen 518055, China


Space Science Institute, Macau University of Science and Technology, Macau 999078, China


Chinese Academy of Sciences Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei 230026, China


Space Research Institute, Austrian Academy of Sciences, Graz 8042, Austria

Corresponding author: TieLong Zhang,

Received Date: 2020-01-05
Web Publishing Date: 2020-01-21

With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling features is presented in MHD and kinetic regimes. It can be observed that turbulence is a common phenomenon in the solar wind in both regimes. The solar wind MHD turbulence is modified at the Venusian bow shock; MHD turbulence is absent in the Venusian magnetosheath but present at the magnetosheath boundary layer. Pre-existing kinetic turbulence from the far upstream solar wind is modified in the near solar wind region, while kinetic turbulence can be extensively observed throughout the Venusian magnetosheath and in some regions of the induced magnetosphere. Our results reveal that, in the near-Venusian space, energy cascade can be developed at the boundary between magnetosheath and wake, and the turbulence-related dissipation of magnetic energy occurs extensively in the magnetosheath and the induced magnetosphere.

Key words: turbulence, near-Venusian space, kinetic effects, Venus Express

Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., and Vaisberg, O. L. (2011). The induced magnetospheres of Mars, Venus, and Titan. Space Sci. Rev., 162(1-4), 113–171.

Bruno, R., and Carbone, V. (2005). The solar wind as a turbulence laboratory. Living Rev. Solar Phys., 2, 4.

Du, J., Zhang, T. L., Baumjohann, W., Wang, C., Volwerk, M., Vörös, Z., and Guicking, L. (2010). Statistical study of low-frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations. J. Geophys. Res. Space Phys., 115(A12), A12251.

Dwivedi, N. K., Schmid, D., Narita, Y., Kovács, P., Vörös, Z., Delva, M., and Zhang, T. L. (2015). Statistical investigation on the power-law behavior of magnetic fluctuations in the Venusian magnetosheath. Earth, Planets and Space, 67(1), 137.

Gringauz, K. I. (1981). A comparison of the magnetospheres of Mars, Venus and the Earth. Adv. Space Res., 1(1), 5–24.

Guicking, L., Glassmeier, K. H., Auster, H. U., Delva, M., Motschmann, U., Narita, Y., and Zhang, T. L. (2010). Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations. Annales Geophysicae, 28, 951–967.

Lembège, B., and Savoini, P. (2002). Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res. Space Phys., 107(A3), SMP X-1–SMP X-18.

Luhmann, J. G., Tatrallyay, M., Russell, C. T., and Winterhalter, D. (1983). Magnetic field fluctuations in the Venus magnetosheath. Geophys. Res. Lett., 10(8), 655–658.

Luhmann, J. G. (1986). The solar wind interaction with Venus. Space Sci. Rev., 44(3-4), 241–306.

Möstl, U. V., Erkaev, N. V., Zellinger, M., Lammer, H., Gröller, H., Biernat, H. K., and Korovinskiy, D. (2011). The Kelvin-Helmholtz instability at Venus: what is the unstable boundary?. Icarus, 216(2), 476–484.

Phillips, J. L., and McComas, D. J. (1991). The magnetosheath and magnetotail of Venus. Space Sci. Rev., 55(1-4), 1–80.

Ruhunusiri, S., Halekas, J. S., Espley, J. R., Mazelle, C., Brain, D., Harada, Y., DiBraccio, G. A., Livi, R., Larson, D. E.,.. Howes, G. G. (2017). Characterization of turbulence in the Mars plasma environment with MAVEN observations. J. Geophys. Res. Space Phys., 122(1), 656–674.

Shan, L. C., Lu, Q. M., Mazelle, C., Huang, C., Zhang, T. L., Wu, M. Y., Gao, X. L., and Wang, S. (2015). The shape of the Venusian bow shock at solar minimum and maximum: Revisit based on VEX observations. Planet. Space Sci., 109-110, 32–37.

Svedhem, H., Titov, D. V., McCoy, D., Lebreton, J. P., Barabash, S., Bertaux, J. L., Drossart, P., Formisano, V., Häusler, B.,.. Coradini, M. (2007). Venus Express-the first European mission to Venus. Planet. Space Sci., 55(12), 1636–1652.

Titov, D. V., Svedhem, H., Koschny, D., Hoofs, R., Barabash, S., Bertaux, J. L., Drossart, P., Formisano, V., Häusler, B.,.. Clochet, A. (2006). Venus Express science planning. Planet. Space Sci., 54(13-14), 1279–1297.

Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79(1), 61–78.<0061:APGTWA>2.0.CO;2

Vörös, Z., Baumjohann, W., Nakamura, R., Volwerk, M., Runov, A., Zhang, T. L., Eichelberger, H. U., Treumann, R., Georgescu, E., … Réme, H. (2004). Magnetic turbulence in the plasma sheet. J. Geophys. Res. Space Phys., 109(A11), A11215.

Vörös, Z., Zhang, T. L., Leubner, M. P., Volwerk, M., Delva, M., Baumjohann, W., and Kudela, K. (2008a). Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophys. Res. Lett., 35(11), L11102.

Vörös, Z., Zhang, T. L., Leaner, M. P., Volwerk, M., Delva, M., and Baumjohann, W. (2008b). Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake. J. Geophys. Res. Planets, 113(E12), E00B21.

Xiao, S. D., Zhang, T. L., and Wang, G. Q. (2017). Statistical study of low-frequency magnetic field fluctuations near Venus during the solar cycle. J. Geophys. Res. Space Phys., 122(8), 8409–8418.

Xiao, S. D., Zhang, T. L., and Vörös, Z. (2018). Magnetic fluctuations and turbulence in the Venusian magnetosheath downstream of different types of bow shock. J. Geophys. Res. Space Phys., 123(10), 8219–8226.

Zhang, T. L., Baumjohann, W., Delva, M., Auster, H. U., Balogh, A., Russell, C. T., Barabash, S., Balikhin, M., Berghofer, G., … Lebreton, J. P. (2006). Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express. Planet. Space Sci., 54(13-14), 1336–1343.

Zhang, T. L., Delva, M., Baumjohann, W., Auster, H. U., Carr, C., Russell, C. T., Barabash, S., Balikhin, M., Kudela, K., … Lebreton, J. P. (2007). Little or no solar wind enters Venus’ atmosphere at solar minimum. Nature, 450(7170), 654–656.

Zhang, T. L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C. T., Wei, H. Y., Wang, C., Balikhin, M., Barabash, S., … Kudela, K. (2008). Induced magnetosphere and its outer boundary at Venus. J. Geophys. Res. Planets, 113(E9), E00B20.


ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011


MoRan Liu, Chen Zhou, Ting Feng, Xiang Wang, ZhengYu Zhao, 2022: Numerical study on matching conditions of Langmuir parametric instability and the formation of Langmuir turbulence in ionospheric heating, Earth and Planetary Physics. doi: 10.26464/epp2022043


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz, 2022: Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations, Earth and Planetary Physics, 6, 28-41. doi: 10.26464/epp2022006


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Jie Dong, Gabriele Cambiotti, HanJiang Wen, Roberto Sabadini, WenKe Sun, 2021: Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations, Earth and Planetary Physics, 5, 90-104. doi: 10.26464/epp2021010


YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050


ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics. doi: 10.26464/epp2022041


MingHui Zhu, YiQun Yu, Xing Cao, BinBin Ni, XingBin Tian, JinBin Cao, Vania K. Jordanova, 2022: Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics, Earth and Planetary Physics, 6, 329-338. doi: 10.26464/epp2022037


QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028


YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008


PengCheng Zhou, William L. Ellsworth, HongFeng Yang, Yen Joe Tan, Gregory C. Beroza, MinHan Sheng, RiSheng Chu, 2021: Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China, Earth and Planetary Physics, 5, 501-519. doi: 10.26464/epp2021053


Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana, 2022: Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications, Earth and Planetary Physics, 6, 42-51. doi: 10.26464/epp2022003


GuangWen Wang, HaiYan Wang, HongQiang Li, ZhanWu Lu, WenHui Li, TaiRan Xu, 2022: Application of active-source surface waves in urban underground space detection: A case study of Rongcheng County, Hebei, China, Earth and Planetary Physics, 6, 385-398. doi: 10.26464/epp2022039


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Turbulence in the near-Venusian space: Venus Express observations

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang