Citation:
Wu, X. S., Cui, J., Cao, Y. T., Sun, W. Q., Luo, Q., and Ni, B. B. (2020). Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance. Earth Planet. Phys., 4(4), 390–395. http://doi.org/10.26464/epp2020035
2020, 4(4): 390-395. doi: 10.26464/epp2020035
Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance
1. | National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China |
2. | Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China |
3. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China |
4. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430074, China |
An important population of the dayside Martian ionosphere are photoelectrons that are produced by solar Extreme Ultraviolet and X-ray ionization of atmospheric neutrals. A typical photoelectron energy spectrum is characterized by a distinctive peak near 27 eV related to the strong solar HeII emission line at 30.4 nm, and an additional peak near 500 eV related to O Auger ionization. In this study, the extensive measurements made by the Solar Wind Electron Analyzer on board the recent Mars Atmosphere and Volatile Evolution spacecraft are analyzed and found to verify the scenario that Martian ionosphere photoelectrons are driven by solar radiation. We report that the photoelectron intensities at the centers of both peaks increase steadily with increasing solar ionizing flux below 90 nm and that the observed solar cycle variation is substantially more prominent near the O Auger peak than near the HeII peak. The latter observation is clearly driven by a larger variability in solar irradiance at shorter wavelengths. When the solar ionizing flux increases from 1 mW·m-2 to 2.5 mW·m-2, the photoelectron intensity increases by a factor of 3.2 at the HeII peak and by a much larger factor of 10.5 at the O Auger peak, both within the optically thin regions of the Martian atmosphere.
Adams, D., Xu, S., Mitchell, D. L., Lillis, R. J., Fillingim, M., Andersson, L., Fowler, C., Connerney, J. E. P., Espley, J., and Mazelle, C. (2018). Using magnetic topology to probe the sources of Mars’ nightside ionosphere. Geophys. Res. Lett., 45(22), 12190–12197. https://doi.org/10.1029/2018GL080629 |
Cao, Y. T., Wellbrock, A., Coates, A. J., Caro-Carretero, R., Jones, G. H., Cui, J., Galand, M., and Dougherty, M. K. (2020a). Field-aligned photoelectron energy peaks at high altitude and on the nightside of Titan. J. Geophys. Res. Planets, 125(1), e06252. https://doi.org/10.1029/2019JE006252 |
Cao, Y. T., Cui, J., Wu, X. S., and Zhong, J. H. (2020b). Photoelectron pitch angle distribution near Mars and its implications on cross terminator magnetic field connectivity. Earth Planet. Phys., 4(1), 17–22. https://doi.org/10.26464/epp2020008 |
Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., Young, D. T., and Crary, F. J. (2011). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planet. Space Sci., 59(10), 1019–1027. https://doi.org/10.1016/j.pss.2010.07.016 |
Coates, A. J., Wellbrock, A., Frahm, R. A., Winningham, J. D., Fedorov, A., Barabash, S., and Lundin, R. (2015). Distant ionospheric photoelectron energy peak observations at Venus. Planet. Space Sci., 113–114, 378–384. https://doi.org/10.1016/j.pss.2015.02.003 |
Cui, J., Wu, X. S., Xu, S. S., Wang, X. D., Wellbrock, A., Nordheim, T. A., Cao, Y. T., Wang, W. R., Sun, W. Q., … Wu, S. Q. (2018). Ionization efficiency in the dayside Martian upper atmosphere. Astrophys. J. Lett., 857(2), L18. https://doi.org/10.3847/2041-8213/aabcc6 |
Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1–4), 293–301. https://doi.org/10.1007/s11214-015-0195-2 |
Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D. R., Kataria, D. O., Lundin, R., … Dierker, C. (2006a). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182(2), 371–382. https://doi.org/10.1016/j.icarus.2006.01.014 |
Frahm, R. A., Sharber, J. R., Winningham, J. D., Wurz, P., Liemohn, M. W., Kallio, E., Yamauchi, M., Lundin, R., Barabash, S., … McKenna-Lawler, S. (2006b). Locations of atmospheric photoelectron energy peaks within the Mars environment. Space Sci. Rev., 126(1–4), 389–402. https://doi.org/10.1007/s11214-006-9119-5 |
Garnier, P., Steckiewicz, M., Mazelle, C., Xu, S., Mitchell, D., Holmberg, M. K. G., Halekas, J. S., Andersson, L., Brain, D. A., … Jakosky, B. M. (2017). The Martian photoelectron boundary as seen by MAVEN. J. Geophys. Res. Space Phys., 122(10), 10472–10485. https://doi.org/10.1002/2017JA024497 |
Haider, S. A., and Mahajan, K. K. (2014). Lower and upper ionosphere of Mars. Space Sci. Rev., 182(1–4), 19–84. https://doi.org/10.1007/s11214-014-0058-2 |
Han, Q. Q., Fan, K., Cui, J., Wei, Y., Fraenz, M., Dubinin, E., Chai, L. H., Rong, Z. J., Wan, W. X., … Connerney, J. E. P. (2019). The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res. Space Phys., 124(10), 8015–8022. https://doi.org/10.1029/2019JA026739 |
Hantsch, M. H., and Bauer, S. J. (1990). Solar control of the Mars ionosphere. Planet. Space Sci., 38(4), 539–542. https://doi.org/10.1016/0032-0633(90)90146-H |
Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271 |
Liemohn, M. W., Mitchell, D. L., Nagy, A. F., Fox, J. L., Reimer, T. W., and Ma, Y. J. (2003). Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field-dependent transport code. J. Geophys. Res. Planets, 108(E12), 5134. https://doi.org/10.1029/2003JE002158 |
Liemohn, M. W., Frahm, R. A., Winningham, J. D., Ma, Y., Barabash, S., Lundin, R., Kozyra, J. U., Nagy, A. F., Bougher, S. M., … Dierker, C. (2006). Numerical interpretation of high-altitude photoelectron observations. Icarus, 182(2), 383–395. https://doi.org/10.1016/j.icarus.2005.10.036 |
Mantas, G. P., and Hanson, W. B. (1979). Photoelectron fluxes in the Martian ionosphere. J. Geophys. Res. Space Phys., 84(A2), 369–385. https://doi.org/10.1029/JA084iA02p00369 |
Matta, M., Galand, M., Moore, L., Mendillo, M., and Withers, P. (2014). Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 227, 78–88. https://doi.org/10.1016/j.icarus.2013.09.006 |
McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., … Jakosky, B. (2015). MAVEN SupraThermal and thermal ion compostion (STATIC) instrument. Space Sci. Rev., 195(1–4), 199–256. https://doi.org/10.1007/s11214-015-0175-6 |
Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (2001). Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. Planets, 106(10), 23419–23427. https://doi.org/10.1029/2000JE001435 |
Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1–4), 495–528. https://doi.org/10.1007/s11214-015-0232-1 |
Morgan, D. D., Gurnett, D. A., Kirchner, D. L., Fox, J. L., Nielsen, E., and Plaut, J. J. (2008). Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res. Space Phys., 113(A9), A09303. https://doi.org/10.1029/2008JA013313 |
Peterson, W. K., Thiemann, E. M. B., Eparvier, F. G., Andersson, L., Fowler, C. M., Larson, D., Mitchell, D., Mazelle, C., Fontenla, J., … Jakosky, B. (2016). Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. J. Geophys. Res. Space Phys., 121(9), 8859–8870. https://doi.org/10.1002/2016JA022677 |
Sakai, S., Rahmati, A., Mitchell, D. L., Cravens, T. E., Bougher, S. W., Mazelle, C., Peterson, W. K., Eparvier, F. G., Fontenla, J. M., and Jakosky, B. M. (2015). Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophys. Res. Lett., 42(21), 8894–8900. https://doi.org/10.1002/2015GL065169 |
Sakai, S., Andersson, L., Cravens, T. E., Mitchell, D. L., Mazelle, C., Rahmati, A., Fowler, C. M., Bougher, S. W., Thiemann, E. M. B., … Jakosky, B. M. (2016). Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. J. Geophys. Res. Space Phys., 121(7), 7049–7066. https://doi.org/10.1002/2016JA022782 |
Shutte, N. M., Király, P., Cravens, T. E., Dyachkov, A. V., Gombos, T. I., Gringuaz, K. I., Nagy, A. F., Sharp, W. E., Sheronova, S. M., … Verigin, M. (1989). Observation of electron and ion fluxes in the vicinity of Mars with the HARP spectrometer. Nature, 341(6243), 614–616. https://doi.org/10.1038/341614a0 |
Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512 |
Trantham, M., Liemohn, M., Mitchell, D., and Frank, J. (2011). Photoelectrons on closed crustal field lines at Mars. J. Geophys. Res. Space Phys., 116(A7), A07311. https://doi.org/10.1029/2010JA016231 |
Vogt, M. F., Withers, P., Mahaffy, P. R., Benna, M., Elrod, M. K., Halekas, J. S., Connerney, J. E. P., Espley, J. R., Mitchell, D. L., … Jakosky, B. M. (2015). Ionopause-like density gradients in the Martian ionosphere: A first look with MAVEN. Geophys. Res. Lett., 42(21), 8885–8893. https://doi.org/10.1002/2015GL065269 |
Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.027 |
Wu, X. S., Cui, J., Cao, Y. T., Liu, L. J., Zhou, Z. J., Huang, Y. Y., He, F., and Wei, Y. (2019a). On the hardness of the photoelectron energy spectrum near Mars. J. Geophys. Res. Planets, 124(11), 2745–2753. https://doi.org/10.1029/2019JE006093 |
Wu, X. S., Cui, J., Yu, J., Liu, L. J., and Zhou, Z. J. (2019b). Photoelectron balance in the dayside Martian upper atmosphere. Earth Planet. Phys., 3(5), 373–379. https://doi.org/10.26464/epp2019038 |
Xu, S. S., Liemohn, M. W., Peterson, W. K., Fontenla, J., and Chamberlin, P. (2015). Comparison of different solar irradiance models for the superthermal electron transport model for Mars. Planet. Space Sci., 119, 62–68. https://doi.org/10.1016/j.pss.2015.09.008 |
Xu, S. S., and Liemohn, M. W. (2015). Superthermal electron transport model for Mars. Earth Space Sci., 2(3), 47–74. https://doi.org/10.1002/2014EA000043 |
Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, F., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, B. (2016a). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527 |
Xu, S. S., Liemohn, M., Bougher, S., and Mitchell, D. (2016b). Martian high-altitude photoelectrons independent of solar zenith angle. J. Geophys. Res. Space Phys., 121(4), 3767–3780. https://doi.org/10.1002/2015JA022149 |
Xu, S. S., Mitchell, D., Liemohn, M., Fang, X. H., Ma, Y. J., Luhmann, J., Brain, D., Steckiewicz, M., Mazelle, C., … Jakosky, B. (2017). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res. Space Phys., 122(2), 1831–1852. https://doi.org/10.1002/2016JA023467 |
Yao, M. J., Cui, J., Wu, X. S., Huang, Y. Y., and Wang, W. R. (2019). Variability of the Martian ionosphere from the MAVEN radio occultation science experiment. Earth Planet. Phys., 3(4), 283–289. https://doi.org/10.26464/epp2019029 |
[1] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[2] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[3] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[4] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[5] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[6] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[7] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[8] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[9] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[10] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
[11] |
H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047 |
[12] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[13] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[14] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[15] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[16] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[17] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[18] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[19] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[20] |
XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)