Citation:
Cao, Y. T., Cui, J., Ni, B. B., Wu, X. S., Luo, Q., and He, Z. G. (2020). Bidirectional electron conic observations for photoelectrons in the Martian ionosphere. Earth Planet. Phys., 4(4), 403–407. http://doi.org/10.26464/epp2020037
2020, 4(4): 403-407. doi: 10.26464/epp2020037
Bidirectional electron conic observations for photoelectrons in the Martian ionosphere
1. | Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China |
2. | School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
3. | School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China |
4. | Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China |
5. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China |
Electron pitch angle distributions similar to bidirectional electron conics (BECs) have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements. BEC distribution, also termed “butterfly” distribution, presents a local minimum flux at 90° and a maximum flux before reaching the local loss cone. Previous studies have focused on 115 eV electrons that were produced mainly via solar wind electron impact ionization. Here using Solar Wind Electron Analyzer measurements made onboard the Mars Atmosphere and Volatile Evolution spacecraft, we identify 513 BEC events for 19–55 eV photoelectrons that were generated via photoionization only. Therefore, we are investigating electrons observed in regions well away from their source regions, to be distinguished from 115 eV electrons observed and produced in the same regions. We investigate the spatial distribution of the 19–55 eV BECs, revealing that they are more likely observed on the nightside as well as near strong crustal magnetic anomalies. We propose that the 19–55 eV photoelectron BECs are formed due to day-to-night transport and the magnetic mirror effect of photoelectrons moving along cross-terminator closed magnetic field lines.
Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Réme, H., … Bauer, S. J. (1992). Mars observer magnetic fields investigation. J. Geophys. Res, 97(E5), 7799–7814. https://doi.org/10.1029/92JE00344 |
Adams, D., Xu, S., Mitchell, D. L., Lillis, R. L., Fillingim, M., Andersson, L., Fowler, C., Connerney, J. E. P., Espley, J., and Mazelle, C. (2018). Using magnetic topology to probe the sources of Mars’ nightside ionosphere. Geophys. Res. Lett., 45(22), 12,190–12,197. https://doi.org/10.1029/2018GL080629 |
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., Kim, T. K., Kurth, W. S., Levin, S., … Zink, J. L. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophys. Res. Lett., 44(14), 7131–7139. https://doi.org/10.1002/2017GL073180 |
Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., Chizek, M., and Ridley, A. (2015). Mars global ionosphere–thermosphere model: solar cycle, seasonal, and diurnal variations of the mars upper atmosphere. J. Geophys. Res.: Planets, 120(2), 311–342. https://doi.org/10.1002/2014JE004715 |
Brain, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S., and Lin, R. P. (2007). Electron pitch angle distributions as indicators of magnetic field topology near Mars. J. Geophys. Res.: Space Phys., 112(A9), A09201. https://doi.org/10.1029/2007JA012435 |
Cao, Y. T., Cui, J., Wu, X. S., Guo, J. P., and Wei, Y. (2019). Structural variability of the Nightside Martian ionosphere near the terminator: implications on plasma sources. J. Geophys. Res.: Planets, 124(6), 1495–1511. https://doi.org/10.1029/2019JE005970 |
Cao, Y. T., Cui, J., Wu, X. S., and Zhong, J. H. (2020). Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity. Earth Planet. Phys., 4(1), 17–22. https://doi.org/10.26464/epp2020008 |
Chen, Y., Friedel, R. H. W., Henderson, M. G., Claudepierre, S. G., Morley, S. K., and Spence, H. E. (2014). REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth’s outer radiation belt. J. Geophys. Res.: Space Phys., 119(3), 1693–1708. https://doi.org/10.1002/2013JA019431 |
Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1–4), 257–291. https://doi.org/10.1007/s11214-015-0169-4 |
Cui, J., Galand, M., Yelle, R. V., Wei, Y., and Zhang, S. J. (2015). Day-to- night transport in the Martian ionosphere: Implications from total electron content measurements. J. Geophys. Res.: Space Phys., 120(3), 2333–2346. https://doi.org/10.1002/2014JA020788 |
Duru, F., Gurnett, D. A., Morgan, D. D., Winningham, J. D., Frahm, R. A., and Nagy, A. F. (2011). Nightside ionosphere of Mars studied with local electron densities: A general overview and electron density depressions. J. Geophys. Res.: Space Phys., 116(A10), A10316. https://doi.org/10.1029/2011JA016835 |
Fox, J. L., Brannon, J. F., and Porter, H. S. (1993). Upper limits to the nightside ionosphere of Mars. Geophys. Res. Lett., 20(13), 1339–1342. https://doi.org/10.1029/93GL01349 |
Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D. R., Kataria, D. O., Lundin, R., … Dierker, C. (2006). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182(2), 371–382. https://doi.org/10.1016/j.icarus.2006.01.014 |
Garnier, P., Steckiewicz, M., Mazelle, C., Xu, S., Mitchell, D., Holmberg, M. K. G., Halekas, J. S., Andersson, L., Brain, D. A., … Jakosky, B. M. (2017). The Martian photoelectron boundary as seen by MAVEN. J. Geophys. Res.: Space Phys., 122(10), 10,472–10,485. https://doi.org/10.1002/2017JA024497 |
Girazian, Z., Mahaffy, P. R., Lillis, R. J., Benna, M., Elrod, M., and Jakosky, B. M. (2017). Nightside ionosphere of Mars: Composition, vertical structure, and variability. J. Geophys. Res.: Space Phys., 122(4), 4712–4725. https://doi.org/10.1002/2016JA023508 |
Gu, X. D., Zhao, Z. Y., Ni, B. B., Shprits, Y., and Zhou, C. (2011). Statistical analysis of pitch angle distribution of radiation belt energetic electrons near the geostationary orbit: CRRES observations. J. Geophys. Res.: Space Phys., 116(A1), A01208. https://doi.org/10.1029/2010JA016052 |
Hamil, O., Cravens, T. E., Rahmati, A., Connerney, J. E. P., and Andersson, L. (2019). Pressure gradients driving ion transport in the topside Martian atmosphere. J. Geophys. Res.: Space Phys., 124(7), 6117–6126. https://doi.org/10.1029/2019ja026670 |
Han, Q. Q., Fan, K., Cui, J., Wei, Y., Fraenz, M., Dubinin, E., Chai, L. H., Rong, Z. J., Wan, W. X., … Connerney, J. E. P. (2019). The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res.: Space Phys., 124(10), 8015–8022. https://doi.org/10.1029/2019JA026739 |
Lundin, R., Eliasson, L., Hultqvist, B., and Stasiewicz, K. (1987). Plasma ergization on auroral field lines as observed by the Viking spacecraft. Geophys. Res. Lett., 14(4), 443–446. https://doi.org/10.1029/GL014i004p00443 |
Ma, Y. J., Fang, X., Nagy, A. F., Russell, C. T., and Toth, G. (2014). Martian ionospheric responses to dynamic pressure enhancements in the solar wind. J. Geophys. Res. Space Physics, 119(2), 1272–1286. https://doi.org/10.1002/2013JA019402 |
Ma, Q., Thorne, R. M., Li, W., Zhang, X. J., Mauk, B. H., Paranicas, C., Haggerty, D. K., Kurth, W. S., Connerney, J. E. P., … Bolton, S. J. (2017). Electron butterfly distributions at particular magnetic latitudes observed during Juno’s perijove pass. Geophys. Res. Lett., 44(10), 4489–4496. https://doi.org/10.1002/2017GL072983 |
Menietti, J. D., and Weimer, D. R. (1998). DE observations of electric field oscillations associated with an electron conic. J. Geophys. Res.: Space Phys., 103(A1), 431–438. https://doi.org/10.1029/97JA02496 |
Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M.H., and Ness, N. F. (2001). Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res.: Planets, 106(E10), 23,419–23,427. https://doi.org/10.1029/2000JE001435 |
Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1–4), 495–528. https://doi.org/10.1007/s11214-015-0232-1 |
Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res.: Planets, 119(6), 1162–1188. https://doi.org/10.1002/2013JE004555 |
Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, A., …Trotignon, J. G. (2004). The plasma environment of Mars. Space Sci. Rev., 111(1-2), 33–114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92 |
Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010). Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. J. Geophys. Res.: Planets, 115(E12), E12009. https://doi.org/10.1029/2010JE003663 |
Ni, B. B., Zou, Z. Y., Li, X. L., Bortnik, J., Xie, L., and Gu, X. D. (2016). Occurrence characteristics of outer zone relativistic electron butterfly distribution: a survey of Van Allen Probes REPT measurements. Geophys. Res. Lett, 43(11), 5644–5652. https://doi.org/10.1002/2016GL069350 |
Ulusen, D., Brain, D. A., and Mitchell, D. L. (2011). Observation of conical electron distributions over Martian crustal magnetic fields. J. Geophys. Res.: Space Phys., 116(A7), A07214. https://doi.org/10.1029/2010JA016217 |
Weber, T., Brain, D., Mitchell, D., Xu, S. S., Connerney, J., and Halekas, J. (2017). Characterization of low-altitude Nightside Martian magnetic topology using electron pitch angle distributions. J. Geophys. Res.: Space Phys., 122(10), 9777–9789. https://doi.org/10.1002/2017JA024491 |
Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res.: Space Phys., 117(A12), A12307. https://doi.org/10.1029/2012JA018185 |
Wu, X. S., Cui, J., Cao, Y. T., Liu, L. J., Zhou, Z. J., Huang, Y. Y., He, F., and Wei, Y. (2019a). On the hardness of the photoelectron energy spectrum near Mars. J. Geophys. Res.: Planets, 124(11), 2745–2753. https://doi.org/10.1029/2019JE006093 |
Wu, X. S., Cui, J., Yu, J., Liu, L. J., and Zhou, Z. J. (2019b). Photoelectron balance in the dayside Martian upper atmosphere. Earth Planet. Phys., 3(5), 373–379. https://doi.org/10.26464/epp2019038 |
Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019c). The morphology of the topside Martian ionosphere: implications on bulk ion flow. J. Geophys. Res.: Planets, 124(3), 734–751. https://doi.org/10.1029/2018JE005895 |
Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, M., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, B. (2016). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527 |
Xu, S. S., Mitchell, D., Liemohn, M., Fang, X. H., Ma, Y. J., Luhmann, J., Brain, D., Steckiewicz, M., Mazelle, C., … Jakosky, B. (2017). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res.: Space Phys., 122(2), 1831–1852. https://doi.org/10.1002/2016JA023467 |
Xu, S. S., Mitchell, D., Luhmann, J., Ma, Y. J., Fang, X. H., Harada, Y., Hara, T., Brain, D., Weber, T., … DiBraccio, G. A. (2017). High-altitude closed magnetic loops at mars observed by MAVEN. Geophys. Res. Lett., 44(22), 11,229–11,238. https://doi.org/10.1002/2017GL075831 |
Xu, S. S., Weber, T., Mitchell, D. L., Brain, D. A., Mazelle, C., DiBraccio, G. A., and Espley, J. (2019). A technique to infer magnetic topology at mars and its application to the terminator region. J. Geophys. Res.: Space Phys., 124(3), 1823–1842. https://doi.org/10.1029/2018JA026366 |
Yang, C., Su, Z. P., Xiao, F. L., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N.,… Funsten, H. O. (2017). A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region. Geophys. Res. Lett., 44(9), 3980–3990. https://doi.org/10.1002/2017GL073116 |
Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res.: Space Phys., 95(A10), 17,095–17,102. https://doi.org/10.1029/JA095iA10p17095 |
[1] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[2] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[3] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[4] |
Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036 |
[5] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[6] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[7] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[8] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[9] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[10] |
Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006 |
[11] |
Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025 |
[12] |
H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047 |
[13] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[14] |
A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz, 2022: Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations, Earth and Planetary Physics, 6, 28-41. doi: 10.26464/epp2022006 |
[15] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[16] |
JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043 |
[17] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[18] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[19] |
Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022 |
[20] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)