Citation:
Ding, G. X., Li, J. W., Zhang, X. X., He, F., He, L. P., Song, K. F., Sun, L., Dai, S., Liu, S. J., Chen, B., Yu, C., Hu, X. Q., Gu, S. Y., Yang, Z. D. and Zhang, P. (2021). Wide-field aurora imager onboard Fengyun satellite: Data products and validation. Earth Planet. Phys., 5(1), 73–78. http://doi.org/10.26464/epp2021003
2021, 5(1): 73-78. doi: 10.26464/epp2021003
Wide-field aurora imager onboard Fengyun satellite: Data products and validation
1. | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
2. | Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081, China |
3. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
4. | Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China |
5. | College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
6. | State Key Laboratory of Applied Optics, Chinese Academy of Sciences, Changchun 130033, China |
New observations of auroras based on the wide-field aurora imager (WAI) onboard Fengyun-3D (FY-3D) satellite are exhibited in this paper. Validity of the WAI data is analyzed by comparing auroral boundaries derived from WAI observations with results obtained from data collected by the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) aboard the Defense Meteorological Satellite Program (DMSP F18). Dynamic variations of the aurora with the solar wind, interplanetary magnetic field (IMF) parameters, and the SYM-H index are also investigated. The comparison of auroral boundaries indicates that the WAI data are morphologically valid and suitable to the study of auroral dynamics. Effective responses to solar wind parameters indicate that the WAI data can be useful to monitor and predict the Earth’s space weather. Since the configuration of aurora is a good indicator of the solar wind–magnetosphere–ionosphere (SW-M-I) coupling system, and can reflect the disturbance of the space environment, the WAI will provide important data to help us to study the physical processes in space.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Boston: Springer. https://doi.org/10.1007/978-1-4757-0450-1222 |
Ding, G. X., He, F., Zhang, X. X., and Chen, B. (2017). A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI. J. Geophys. Res., 122(2), 2162–2173. https://doi.org/10.1002/2016JA023295 |
Germany, G. A., Torr, D. G., Richards, P. G., Torr, M. R., and John, S. (1994a). Determination of ionospheric conductivities from FUV auroral emissions. J. Geophys. Res., 99(A12), 23297–23305. https://doi.org/10.1029/94JA02038 |
Germany, G. A., Torr, M. R., Torr, D. G., and Richards, P. G. (1994b). Use of FUV auroral emissions as diagnostic indicators. J. Geophys. Res., 99(A1), 383–388. https://doi.org/10.1029/93JA02357 |
Germany, G. A., Parks, G. K., Ranganath, H., Elsen, R., Richards, P. G., Swift, E., Spann, J. F., and Brittnacher, M. (1998). Analysis of auroral morphology: substorm precursor and onset on January 10, 1997. Geophys. Res. Lett., 25(15), 3043–3046. https://doi.org/10.1029/98GL01220 |
Liou, K., Newell, P. T., Meng, C. I., Brittnacher, M., and Parks, G. (1998). Characteristics of the solar wind controlled auroral emissions. J. Geophys. Res., 103(A8), 17543–17557. https://doi.org/10.1029/98JA01388 |
Liou, K., and Sotirelis, T. (2016). Response of northern winter polar cap to auroral substorms. Geophys. Res. Lett., 43(9), 4098–4105. https://doi.org/10.1002/2016GL068039 |
Luan, X. L., Zhou, S., and Dou, X. K. (2018). Auroral energy flux distribution over the nightside auroral oval observed by the DMSP F16/SSUSI: seasonal, geomagnetic, and solar activity dependences. J. Geophys. Res., 123(5), 4457–4466. https://doi.org/10.1029/2017JA023970 |
Meier, R. R. (1991). Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev., 58(1), 1–185. https://doi.org/10.1007/BF01206000 |
Milan, S. E., Gosling, J. S., and Hubert, B. (2012). Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. J. Geophys. Res., 117(A3), A03226. https://doi.org/10.1029/2011JA017082 |
Paxton, L. J., Meng, C. I., Fountain, G. H., Ogorzalek, B. S., Darlington, E. H., Gary, S. A., Goldsten, J. O., Kusnierkiewicz, D. Y., Lee, S. C., … Smith, B. E. (1992). Special sensor ultraviolet spectrographic imager: an instrument description. In Proceedings of SPIE Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing (pp. 2-16). San Diego, CA, United States: SPIE. https://doi.org/10.1117/12.60595222 |
Paxton, L. J., Meng, C. I., Fountain, G. H., Ogorzalek, B. S., Darlington, E. H., Gary, S. A., Goldsten, J. O., Kusnierkiewicz, D. Y., Lee, S. C., … Daniell, R. E. Jr. (1993). SSUSI-Horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters. In Proceedings of SPIE Ultraviolet Technology IV. San Diego, CA, United States: SPIE. https://doi.org/10.1117/12.140846222 |
Paxton, L. J., Christensen, A. B., Morrison, D., Wolven, B., Kil, H., Zhang, Y. L., Ogorzalek, B. S., Humm, D. C., Goldsten, J. O., … Meng, C. I. (2004). GUVI: a hyperspectral imager for geospace. In Proceedings of SPIE Instruments, Science, and Methods for Geospace and Planetary Remote Sensing (pp. 228-449). Honolulu, Hawai'i, United States: SPIE. https://doi.org/10.1117/12.579171222 |
Sotirelis, T., Korth, H., Hsieh, S. Y., Zhang, Y. L., Morrison, D., and Paxton, L. (2013). Empirical relationship between electron precipitation and far-ultraviolet auroral emissions from DMSP observations. J. Geophys. Res., 118(3), 1203–1209. https://doi.org/10.1002/jgra.50157 |
Yang, Q. J., Liang, J. M., Liu, J. M., Hu, J. Z., and Hu, H. Q. (2013). A method for automatic identification of substorm expansion phase onset from UVI images. Chin. J. Geophys. (in Chinese) |
Zhang, X. X., Chen, B., He, F., Song, K. F., He, L. P., Liu, S. J., Guo, Q. F., Li, J. W., Wang, X. D., … Wang, J. S. (2019). Wide-field auroral imager onboard the Fengyun satellite. Light: Sci. Appl., 8, 47. https://doi.org/10.1038/s41377-019-0157-7 |
Zhang, Y., and Paxton, L. J. (2008). An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Terr. Phys., 70(8-9), 1231–1242. https://doi.org/10.1016/j.jastp.2008.03.008 |
[1] |
XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005 |
[2] |
Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi, 2021: 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal, Earth and Planetary Physics, 5, 559-580. doi: 10.26464/epp2021054 |
[3] |
JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043 |
[4] |
EunJin Jang, Chao Yue, QiuGang Zong, SuiYan Fu, HaoBo Fu, 2021: The effect of non-storm time substorms on the ring current dynamics, Earth and Planetary Physics, 5, 251-258. doi: 10.26464/epp2021032 |
[5] |
Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026 |
[6] |
HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032 |
[7] |
ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan, 2021: Dynamics of the charged particles released from a Sun-grazing comet in the solar corona, Earth and Planetary Physics, 5, 232-238. doi: 10.26464/epp2021023 |
[8] |
MingHui Zhu, YiQun Yu, Xing Cao, BinBin Ni, XingBin Tian, JinBin Cao, Vania K. Jordanova, 2022: Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics, Earth and Planetary Physics, 6, 329-338. doi: 10.26464/epp2022037 |
[9] |
XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009 |
[10] |
RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018 |
[11] |
Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021 |
[12] |
DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038 |
[13] |
ChunYu Ding, YuZhen Cai, ZhiYong Xiao, Yan Su, 2020: A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission, Earth and Planetary Physics, 4, 105-110. doi: 10.26464/epp2020016 |
[14] |
Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013 |
[15] |
XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021 |
[16] |
Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)