Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: He, Y. M., Wen, L. X. and Capdeville, Y. (2021). Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth. Earth Planet. Phys., 5(1), 105–116. http://doi.org/10.26464/epp2021009

2021, 5(1): 105-116. doi: 10.26464/epp2021009

SOLID EARTH: SEISMOLOGY

Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Mohe Observatory of Geophysics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

3. 

Laboratory of Seismology and Physics of Earth’s Interior; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

4. 

Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA

5. 

Laboratoire de Planétologie et Géodynamique de Nantes, UMR6112, CNRS, Université de Nantes, Nantes, France

Corresponding author: YuMei He, ymhe@mail.igcas.ac.cn

Received Date: 2020-07-14
Web Publishing Date: 2020-12-09

We have constrained a small-scale, dome-shaped low-velocity structure near the core-mantle boundary (CMB) of Earth beneath Perm (the Perm anomaly) using travel-time analysis and three-dimensional (3-D) forward waveform modeling of seismic data sampling of the mantle. The best-fitting dome-shaped model centers at 60.0°E, 50.5°N, and has a height of 400 km and a radius that increases from 200 km at the top to 450 km at the CMB. Its velocity reduction varies from 0% at the top to –3.0% at 240km above the CMB to –3.5% at the CMB. A surrounding 240-km-thick high-velocity D'' structure has also been detected. The Perm anomaly may represent a stable small-scale chemical pile in the lowermost mantle, although the hypothesis of a developing mantle plume cannot be ruled out.

Key words: seismic velocity structure, core-mantle boundary, Perm anomaly, chemical pile

Capdeville, Y., To, A., and Romanowicz, B. (2003). Coupling spectral elements and modes in a spherical Earth: an extension to the ‘sandwich’ case. Geophys. J. Int., 154(1), 44–57. https://doi.org/10.1046/j.1365-246X.2003.01959.x

Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference earth model. Phys. Earth Planet. Inter., 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

Farnetani, C. G., and Samuel, H. (2005). Beyond the thermal plume paradigm. Geophys. Res. Lett., 32(7), L07311. https://doi.org/10.1029/2005GL022360

French, S. W., and Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567), 95–99. https://doi.org/10.1038/nature14876

Griffiths, R. W., and Campbell, I. H. (1990). Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett., 99(1-2), 66–78. https://doi.org/10.1016/0012-821X(90)90071-5

He, Y. M., and Wen, L. X. (2009). Structural features and shear-velocity structure of the “Pacific Anomaly”. J. Geophys. Res., 114(B2), B02309. https://doi.org/10.1029/2008JB005814

He, Y. M., and Wen, L. X. (2012). Geographic boundary of the “Pacific Anomaly” and its geometry and transitional structure in the north. J. Geophys. Res., 117(B9), B09308. https://doi.org/10.1029/2012JB009436

He, Y. M., Wen, L. X., and Zheng, T. Y. (2014). Seismic evidence for an 850 km thick low-velocity structure in the Earth’s lowermost mantle beneath Kamchatka. Geophys. Res. Lett., 41(20), 7073–7079. https://doi.org/10.1002/2014GL061249

He, Y. M., Wen, L. X., Capdeville, Y., and Zhao, L. (2015). Seismic evidence for an Iceland thermo-chemical plume in the Earth's lowermost mantle. Earth Planet. Sci. Lett., 417, 19–27. https://doi.org/10.1016/j.jpgl.2015.02.028

Kim, D., Lekić, V., Ménard, B., Baron, D., and Taghizadeh-Popp, M. (2020). Sequencing seismograms: a panoptic view of scattering in the core-mantle boundary region. Science, 368(6496), 1223–1228. https://doi.org/10.1126/science.aba8972

Lay, T., and Garnero, E. J. (2011). Deep mantle seismic modeling and imaging. Annu. Rev. Earth Planet. Sci., 39, 91–123. https://doi.org/10.1146/annurev-earth-040610-133354

Lekic, V., Cottaar, S., Dziewonski, A., and Romanowicz, B. (2012). Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett., 357-358, 68–77. https://doi.org/10.1016/j.jpgl.2012.09.014

Loper, D. E. (1991). Mantle plumes. Tectonophysics, 187(4), 373–384. https://doi.org/10.1016/0040-1951(91)90476-9

McNamara, A. K., and Zhong, S. J. (2004). Thermochemical structures within a spherical mantle: superplumes or piles?. Geophys. Res., 109(B7), B07402. https://doi.org/10.1029/2003JB002847

McNamara, A. K. (2019). A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760, 199–220. https://doi.org/10.1016/j.tecto.2018.04.015

Montelli, R., Nolet, G., Dahlen, F. A., and Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem. Geophys. Geosyst., 7(11), Q11007. https://doi.org/10.1029/2006GC001248

Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H. (2010). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x

Simmons, N. A., Forte, A. M., Boschi, L., and Grand, S. P. (2010). GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res., 115(B12), B12310. https://doi.org/10.1029/2010JB007631

Sun, D. Y., Helmberger, D., Ni, S. D., and Bower, D. (2009). Direct measures of lateral velocity varation in the deep Earth. J. Geophys. Res., 114(B5), B05303. https://doi.org/10.1029/2008JB005873

Sun, D. Y., and Miller, M. S. (2013). Study of the western edge of the African large low shear velocity province. Geochem. Geophys. Geosyst., 14(8), 3109–3125. https://doi.org/10.1002/ggge.20185

Tan, E., and Gurnis, M. (2005). Metastable superplumes and mantle compressibility. Geophys. Res. Lett., 32(20), L20307. https://doi.org/10.1029/2005GL024190

Thorne, M. S., Garnero, E. J., Jahnke, G., Igel, H., and McNamara, A. K. (2013). Mega ultra low velocity zone and mantle flow. Earth Planet. Sci. Lett., 364, 59–67. https://doi.org/10.1016/j.jpgl.2012.12.034

To, A., Romanowicz, B., Capdeville, Y., and Takeuchi, N. (2005). 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: observation and modeling. Earth Planet. Sci. Lett., 233(1-2), 137–153. https://doi.org/10.1016/j.jpgl.2005.01.037

Wang, Y., and Wen, L. X. (2004). Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth’s mantle. J. Geophys. Res., 109(B10), B10305. https://doi.org/10.1029/2003JB002674

Wang, Y., and Wen, L. X. (2007). Geometry and P and S velocity structure of the “African Anomaly”. J. Geophys. Res., 112(B5), B05313. https://doi.org/10.1029/2006JB004483

Wen, L. X. (2002). An SH hybrid method and shear velocity structures in the lowermost mantle beneath the central Pacific and south Atlantic oceans. J. Geophys. Res., 107(B3), 2055. https://doi.org/10.1029/2001JB000499

Wessel, P., and Smith, W. H. F. (1995). New version of the Generic Mapping Tools released. Eos Trans. Am. Geophys. Union, 76(47), 329.

Wysession, M. E., Lay, T., Revenaugh, J., Williams, Q., Garnero, E. J., Jeanloz, R., and Kellogg, L. H. (1998). The D″ discontinuity and its implications. In M. Gurnis, et al. (Eds.), The Core-Mantle Boundary Region (pp. 273-298), Washington, DC: AGU. https://doi.org/10.1029/GD028p0273222

Yu, S. L., and Garnero, E. J. (2018). Ultra-low velocity zone locations: a global assessment. Geochem., Geophys., Geosyst., 19(2), 396–414. https://doi.org/10.1002/2017GC007281

Yuan, K. Q., and Romanowicz, B. (2017). Seismic evidence for partial melting at the root of major hot spot plumes. Science, 357(6349), 393–397. https://doi.org/10.1126/science.aan0760

Zhao, C. P., Garnero, E. J., McNamara, A. K., Schmerr, N., and Carlson, R. W. (2015). Seismic evidence for a chemically distinct thermochemical reservoir in Earth's deep mantle beneath Hawaii. Earth Planet. Sci. Lett., 426, 143–153. https://doi.org/10.1016/j.jpgl.2015.06.012

Zhao, C. P., Garnero, E. J., Li, M. M., McNamara, A., and Yu, S. L. (2017). Intermittent and lateral varying ULVZ structure at the northeastern margin of the Pacific LLSVP. J. Geophys. Res. Solid Earth, 122(2), 1198–1220. https://doi.org/10.1002/2016JB013449

Zheng, X. F., Yao, Z. X., Liang, J. H., and Zheng, J. (2010). The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull. Seismol. Soc. Am., 100(5B), 2866–2872. https://doi.org/10.1785/0120090257

[1]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[2]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[3]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[4]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[5]

Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048

[6]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[7]

Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022

[8]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[9]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[10]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[11]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[12]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[13]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[14]

Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

[15]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[16]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[17]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[18]

TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics. doi: 10.26464/epp2022008

[19]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[20]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth

YuMei He, LianXing Wen, Yann Capdeville