Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Qu, B. H., Lu, J. Y., Wang, M., Yuan, H. Z., Zhou, Y. and Zhang, H. X. (2021). Formation of the bow shock indentation: MHD simulation results. Earth Planet. Phys., 5(3), 259–269. http://doi.org/10.26464/epp2021033

2021, 5(3): 259-269. doi: 10.26464/epp2021033

Formation of the bow shock indentation: MHD simulation results

1. 

Institute of Space Weather, School of Math & Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: JianYong Lu, jylu@nuist.edu.cn

Received Date: 2020-11-20
Web Publishing Date: 2021-05-10

Simulation results from a global magnetohydrodynamic (MHD) model are used to examine whether the bow shock has an indentation and characterize its formation conditions, as well as its physical mechanism. The bow shock is identified by an increase in plasma density of the solar wind, and the indentation of the bow shock is determined by the shock flaring angle. It is shown that when the interplanetary magnetic field (IMF) is southward and the Alfvén Mach number (Mα) of solar wind is high (> 5), the bow shock indentation can be clearly determined. The reason is that the outflow region of magnetic reconnection (MR) that occurs in the low latitude area under southward IMF blocks the original flow in the magnetosheath around the magnetopause, forming a high-speed zone and a low-speed zone that are upstream and downstream of each other. This structure hinders the surrounding flow in the magnetosheath, and the bow shock behind the structure widens and forms an indentation. When Mα is low, the magnetosheath is thicker and the disturbing effect of the MR outflow region is less obvious. Under northward IMF, MR occurs at high latitudes, and the outflow region formed by reconnection does not block the flow inside the magnetosheath, thus the indentation is harder to form. The study of the conditions and formation process of the bow shock indentation will help to improve the accuracy of bow shock models.

Key words: indentation of bow shock, global MHD simulation, interplanetary magnetic field Bz, Alfvén Mach number

Cairns, I. H., and Lyon, J. G. (1995). MHD simulations of Earth's bow shock at low Mach numbers: Standoff distances. J. Geophys. Res., 100(A9), 17173–17180. https://doi.org/10.1029/95JA00993

Chao, J. K., Wu, D. J., Lin, C. H., Yang, Y. H., Yang, X. Y., Kessel, M., Chen, S. H., and Lepping, R. P. (2002). Models for the size and shape of the Earth's magnetopause and bow shock. COSPAR Colloq. Ser., 12, 127–135. https://doi.org/10.1016/S0964-2749(02)80212-8

Chapman, J. F., and Cairns, I. H. (2003). Three-dimensional modeling of earth's bow shock: shock shape as a function of Alfvén Mach number. J. Geophys. Res., 108(A5), SSH 1-1–SSH 1-10. https://doi.org/10.1029/2002JA009569

Cowley, S. W. H. (1981). Asymmetry effects associated with the x-component of the IMF in a magnetically open magnetosphere. Planet. Space Sci., 29(8), 809–818. https://doi.org/10.1016/0032-0633(81)90071-4

Dmitriev, A. V., Chao, J. K., and Wu, D. J. (2003). Comparative study of bow shock models using wind and geotail observations. J. Geophys. Res., 108(A12), SMP 24-1–SMP 24-19. https://doi.org/10.1029/2003JA010027

Fairfield, D. H. (1971). Average and unusual locations of the Earth's magnetopause and bow shock. J. Geophys. Res., 76(28), 6700–6716. https://doi.org/10.1029/JA076i028p06700

Farris, M. H., and Russell, C. T. (1994). Determining the standoff distance of the bow shock: Mach number dependence and use of models. J. Geophys. Res., 99(A9), 17681–17689. https://doi.org/10.1029/94JA01020

Formisano, V. (1979). Orientation and shape of the Earth's bow shock in three dimensions. Planet. Space Sci., 27(9), 1151–1161. https://doi.org/10.1016/0032-0633(79)90135-1

Gombosi, T. I., Dezeeuw, D. L., Groth, C. P. T., and Powell, K. G. (2000). Magnetospheric configuration for parker-spiral IMF conditions: results of a 3d amr mhd simulation. Adv. Space Res., 26(1), 139–149. https://doi.org/10.1016/S0273-1177(99)01040-6

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M. (1994). What is a geomagnetic storm?. J. Geophys. Res., 99(A4), 5771–5792. https://doi.org/10.1029/93JA02867

Hu, H. P., Lu, J. Y., Zhou, Q., Wang, M., Yang, Y. F., Liu, Z. Q., and Pei, S. X. (2015). Simulation of three-dimensional Earth’s bow shock. Chin. J. Space Sci. (in Chinese) , 35(1), 1–8. https://doi.org/10.11728/cjss2015.01.001

Jelínek, K., Němeček, Z., Šafránková., J., and Merka, J. (2008). Influence of the tilt angle on the bow shock shape and location. J. Geophys. Res., 113(A5), A05220. https://doi.org/10.1029/2007ja012813

Jelínek, K., Němeček, Z., and Šafránková, J. (2012). A new approach to magnetopause and bow shock modeling based on automated region identification. J. Geophys. Res., 117, A05208. https://doi.org/10.1029/2011JA017252

Jing, H., Lu, J. Y., Kabin, K., Zhao, J. S., Liu, Z. Q., Yang, Y. F., Zhao, M. X., and Wang, M. (2014). MHD simulation of energy transfer across magnetopause during sudden changes of the IMF orientation. Planet. Space Sci., 97, 50–59. https://doi.org/10.1016/j.pss.2014.04.001

Kabin, K., Rankin, R., Rostoker, G., Marchand, R., Rae, I J., Ridley, A. J., Gombosi, T. I., Clauer, C. R., and Dezeeuw, D. L. (2004). Open-closed field line boundary position: a parametric study using an MHD model. J. Geophys. Res., 109(A5), A05222. https://doi.org/10.1029/2003JA010168

Liu, Z. Q., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., and Cao, X. (2012). Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations. J. Geophys. Res., 117(A7), A07207. https://doi.org/10.1029/2011JA017441

Liu, Z. Q., Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Han, J. P., Wang, J. Y., and Zhao, M. X. (2015). A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation. J. Geophys. Res., 120(7), 5645–5666. https://doi.org/10.1002/2014JA020961

Lu, J. Y., Liu, Z. Q., Kabin, K., Zhao, M. X., Liu, D. D., Zhou, Q., and Xiao, Y. (2011). Three dimensional shape of the magnetopause: Global MHD results. J. Geophys. Res., 116(A9), A09237. https://doi.org/10.1029/2010JA016418

Lu, J. Y., Liu, Z. Q., Kabin, K., Jing, H., Zhao, M. X., and Wang, Y. (2013). The IMF dependence of the magnetopause from global MHD simulations. J. Geophys. Res., 118(6), 3113–3125. https://doi.org/10.1002/jgra.50324

Lu, J. Y., Yuan, H. Z., Wang, M., and Yang, Y. F. (2017). Dipole tilt controls bow shock location and flaring angle. Sci. China Earth Sci., 60(1), 198–206. https://doi.org/10.1007/s11430-015-0268-8

Lu, J. Y., Zhou, Y., Ma, X., Wang, M., Kabin, K., and Yuan, H. Z. (2019a). Earth's bow shock: A new three-dimensional asymmetric model with dipole tilt effects. J. Geophys. Res., 124(7), 5396–5407. https://doi.org/10.1029/2018JA026144

Lu, J. Y., Zhang, H. X., Wang, M., Gu, C. L., and Guan, H. Y. (2019b). Magnetosphere response to the IMF turning from north to south. Earth Planet. Phys., 3(1), 8–16. https://doi.org/10.26464/epp2019002

Merka, J., and Szabo, A. (2004). Bow shock's geometry at the magnetospheric flanks. J. Geophys. Res., 109(A12), A12224. https://doi.org/10.1029/2004JA010567

Merka, J., Szabo, A., Slavin, J. A., and Peredo, M. (2005). Three-dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation. J. Geophys. Res., 110(A04), A04202. https://doi.org/10.1029/2004JA010944

Němeček, Z., and Šafránková, J. (1991). The Earth's bow shock and magnetopause position as a result of the solar wind-magnetosphere interaction. J. Atmos. Terr. Phys., 53(11-12), 1049–1054. https://doi.org/10.1016/0021-9169(91)90051-8

Peredo, M., Slavin, J. A., Mazur, E., and Curtis, S. A. (1995). Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. J. Geophys. Res., 100(A5), 7907–7916. https://doi.org/10.1029/94ja02545

Rae, I. J., Kabin, K., Lu, J. Y., Rankin, R., Milan, S. E., Fenrich, F. R., Watt, C. E. J., Zhang, J. C., Ridley, A. J., … DeZeeuw, D. L. (2010). Comparison of the open-closed separatrix in a global magnetospheric simulation with observations: the role of the ring current. J. Geophys. Res., 115(A8), A08216. https://doi.org/10.1029/2009ja015068

Shi, Q. Q., Zong, Q.-G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Wang, Y. F., Chen, Y., Li, L., …Lucek, E. (2009). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. J. Geophys. Res., 114(A12), A12219. https://doi.org/10.1029/2009JA014475

Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang , H., … Lucek, E. (2013). Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nat. Commun., 4(1), 1466. https://doi.org/10.1038/ncomms2476

Shi, Q. Q., Hartinger, M. D., Angelopoulos, V., Tian, A. M., Fu, S. Y., Zong, Q. G., Weygand, J. M., Raeder, J., Pu, Z. Y., … Shen, X. C. (2014). Solar wind pressure pulse‐driven magnetospheric vortices and their global consequences. J. Geophys. Res., 119(6), 4274–4280. https://doi.org/10.1002/2013JA019551

Shue, J. H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., and Singer, H. J. (1997). A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res., 102(A5), 9497–9511. https://doi.org/10.1029/97JA00196

Song, P., DeZeeuw, D. L., Gombosi, T. I., Groth, C. P. T., and Powell, K. G. (1999). A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. J. Geophys. Res., 104(A12), 28361–28378. https://doi.org/10.1029/1999JA900378

Song, P., DeZeeuw, D.L., Gombosi, T.I., Kozyra, J.U., Powell, K.G. (2001). Global MHD simulations for southward IMF: a pair of wings in the flanks. Adv. Space Res., 28(12), 1763–1771. https://doi.org/10.1016/S0273-1177(01)00544-0

Spreiter, J. R., Summers, A. L., and Alksne, A. Y. (1966). Hydromagnetic flow around the magnetosphere. Planet. Space Sci., 14, 223–253. https://doi.org/10.1016/00320633(66)90-124-3

Tóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., … Kóta, J. (2005). Space weather modeling framework: a new tool for the space science community. J. Geophys. Res., 110(A12), A12226. https://doi.org/10.1029/2005JA011126

Tóth, G., Zeeuw, D. L. D., Gombosi, T. I., Manchester, W. B., Ridley, A. J., Sokolov, I. V., and Roussev, I. (2007). Sun-to-thermosphere simulation of the 28-30 october 2003 storm with the space weather modeling framework. Space Weather, 5(6), S06003. https://doi.org/10.1029/2006SW000272

Verigin, M. I., Kotova, G. A., Slavin, J., Szabo, A., Kessel, M., Safrankova, J., Němeček, Z., Gombosi, T. I., Kabin, K., … Kalinchenko, A. (2001a). Analysis of the 3-d shape of the terrestrial bow shock by interball/magion 4 observations. Adv. Space Res., 28(6), 857–862. https://doi.org/10.1016/S0273-1177(01)00502-6

Verigin, M., Kotova, G., Szabo, A., Slavin, J., Gombosi, T., Kabin, K., Shugaev, F., and Kalinchenko, A. (2001b). Wind observations of the terrestrial bow shock: 3-D shape and motion. Earth Planets Space., 53(10), 1001–1009. https://doi.org/10.1186/BF03351697

Wang, J., Guo, Z. F., Ge, Y. S., Du, A. M., Huang, C., and Qin, P. F. (2018). The responses of the earth’s magnetopause and bow shock to the IMF Bz and the solar wind dynamic pressure: a parametric study using the AMR-CESE-MHD model. J. Space Weather Space Clim., 8(A41). https://doi.org/10.1051/swsc/2018030

Wang, J., Huang, C., Ge, Y. S., Du, A., and Feng, X. (2020). Influence of the IMF Bx on the geometry of the bow shock and magnetopause. Planet. Space Sci., 182, 104844. https://doi.org/10.1016/j.pss.2020.104844

Wang, M., Lu, J. Y., Yuan, H. Z., Kabin, K., Liu, Z. Q., Zhao, M. X., and Li, G. (2015). The dipole tilt angle dependence of the bow shock for southward IMF: MHD results. Planet. Space Sci., 106, 99–107. https://doi.org/10.1016/j.pss.2014.12.002

Wang, M., Lu, J. Y., Kabin, K., Yuan, H. Z., Ma, X., Liu, Z. Q., Yamh, Y. F., Zhao, J. S., Li, G. (2016). The influence of IMF clock angle on the cross section of the tail bow shock. J. Geophys. Res., 121(11), 11077–11085. https://doi.org/10.1002/2016JA022830

Wang, M., Lu, J. Y., Kabin, K., Yuan, H. Z., Liu, Z. Q., Zhao, J. S., and Li, G. (2018). The influence of IMF B-y on the bow shock: observation result. J. Geophys. Res., 123, 1915–1926. https://doi.org/10.1002/2017JA024750

Xiong, M., Peng, Z., Hu, Y. Q., and Zheng, H. N. (2009). Response of the Earth’s magnetosphere and ionosphere to solar wind driver and ionosphere load: results of global MHD simulations. Chin. Phys. Lett., 26(1), 015202. https://doi.org/10.1088/0256-307x/26/1/01520

Zong, Q. G., Fritz, T. A., Zhang, H., Korth, A., Daly, P. W., Dunlop, M. W., Glassmeier, K. H., Reme, H., and Balogh, A. (2004). Triple cusps observed by cluster—temporal or spatial effect?. Geophys. Res. Lett., 31(9), L09810. https://doi.org/10.1029/2003GL019128

Zong, Q. G., and Zhang, H. (2018). In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause. Earth Planet. Phys., 2(3), 231–237. https://doi.org/10.26464/epp2018022

[1]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[2]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[3]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[4]

XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017

[5]

ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics. doi: 10.26464/epp2022041

[6]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[7]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[8]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[9]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[10]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[11]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[12]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[13]

Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047

[14]

MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics, 6, 61-69. doi: 10.26464/epp2022013

[15]

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039

[16]

Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok, 2021: Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms, Earth and Planetary Physics, 5, 180-186. doi: 10.26464/epp2021015

[17]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[18]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[19]

KaiHua Xu, Fei He, Yong Wei, Ross N. Mitchell, Si Chen, YuQi Wang, ZhaoJin Rong, 2022: A new inclination-based method to evaluate the global geomagnetic configuration and axial dipole moment, Earth and Planetary Physics, 6, 359-365. doi: 10.26464/epp2022030

[20]

HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Formation of the bow shock indentation: MHD simulation results

BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang