Citation:
Xiong, Y., Xie, L., Fu, S. Y., Ni, B. B., and Pu, Z. Y. (2021). Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density. Earth Planet. Phys., 5(6), 581–591. http://doi.org/10.26464/epp2021051
2021, 5(6): 581-591. doi: 10.26464/epp2021051
Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density
1. | School of Earth and Space Science, Peking University, Beijing 100871, China |
2. | Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China |
3. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China |
We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements (SWDEs) on November 27−30, 2015. Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions (PAD) first developed at L* = 5.5 and then moved down to L* < 4. According to the evolution of the electron phase space density (PSD) profile, losses of electrons with small pitch angles at L* > 4 during SWDE1 are mainly due to outward radial diffusion. However during SWDE2&3, scattering loss due to EMIC waves is dominant at 4 < L* < 5. As for electrons with large pitch angles, outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell (LCDS). The inner edge of EMIC wave activity moved from L* ~5 to L* ~4 and from L ~6.4 to L ~4.2 from SWDE1 to SWDE2&3, respectively, observed by Van Allen Probes and by ground stations. This is consistent with the inward penetration of anisotropic energetic protons from L* = 4.5 to L* = 3.5, suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.
Anderson, B. J., and Hamilton, D. C. (1993). Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. J. Geophys. Res.: Space Phys., 98(A7), 11369–11382. https://doi.org/10.1029/93JA00605 |
Aseev, N. A., Shprits, Y. Y., Drozdov, A. Y., Kellerman, A. C., Usanova, M. E., Wang, D., and Zhelavskaya, I. S. (2017). Signatures of ultrarelativistic electron loss in the heart of the outer radiation belt measured by van Allen Probes. J. Geophys. Res.: Space Phys., 122(10), 10102–10111. https://doi.org/10.1002/2017JA024485 |
Baker, D. N., Kanekal, S. G., Hoxie, V. C., Batiste, S., Bolton, M., Li, X., Elkington, S. R., Monk, S., Reukauf, R., … Cervelli, B. (2013). The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: Characterization of Earth’s radiation belt high-energy particle populations. Space Sci. Rev., 179(1-4), 337–381. https://doi.org/10.1007/s11214-012-9950-9 |
Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. (2011). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38(18), L18105. https://doi.org/10.1029/2011gl048980 |
Blake, J. B., Baker, D. N., Turner, N., Ogilvie, K. W., and Lepping, R. P. (1997). Correlation of changes in the outer-zone relativistic-electron population with upstream solar wind and magnetic field measurements. Geophys. Res. Lett., 24(8), 927–929. https://doi.org/10.1029/97GL00859 |
Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain Jr, W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., .. Zakrzewski, M. P. (2013). The Magnetic Electron Ion Spectrometer (MAGEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Sci. Rev., 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8 |
Borovsky, J. E., Thomsen, M. F., and Elphic, R. C. (1998). The driving of the plasma sheet by the solar wind. J. Geophys. Res.: Space Phys., 103(A8), 17617–17639. https://doi.org/10.1029/97JA02986 |
Borovsky, J. E., and Denton, M. H. (2009). Relativistic-electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind. J. Geophys. Res.: Space Phys., 114(A2), A02201. https://doi.org/10.1029/2008JA013128 |
Borovsky, J. E., and Denton, M. H. (2014). Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind-driven magnetosphere. J. Geophys. Res.: Space Phys., 119(6), 4307–4334. https://doi.org/10.1002/2014JA019876 |
Borovsky, J. E., and Shprits, Y. Y. (2017). Is the Dst index sufficient to define all geospace storms?. J. Geophys. Res.: Space Phys., 122(11), 11543–11547. https://doi.org/10.1002/2017JA024679 |
Boynton, R. J., Balikhin M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., Amariutei, O. A., Borovsky, J. E., Walker, S. N. (2013). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research:Space Physics, 118(4), 1500–1513. https://doi.org/10.1002/jgra.50192 |
Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Shumko, M., Turner, D. L., Santolik, O., … Kletzing, C. A. (2017). Observations directly linking relativistic electron microbursts to whistler mode chorus: Van Allen Probes and FIREBIRD II. Geophys. Res. Lett., 44(22), 11265–11272. https://doi.org/10.1002/2017GL075001 |
Carson, B. R., Rodger, C. J., and Clilverd, M. A. (2013). POES satellite observations of EMIC-wave driven relativistic electron precipitation during 1998-2010. J. Geophys. Res.: Space Phys., 118(1), 232–243. https://doi.org/10.1029/2012JA017998 |
Chen, L. J., Thorne, R. M., Jordanova, V. K., Wang, C. P., Gkioulidou, M., Lyons, L., and Horne, R. B. (2010). Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM-RAM-HOTRAY modeling. J. Geophys. Res.: Space Phys., 115(A7), A07209. https://doi.org/10.1029/2009JA015075 |
Engebretson, M. J., Peterson, W. K., Posch, J. L., Klatt, M. R., Anderson, B. J., Russell, C. T., Singer, H. J., Arnoldy, R. L., and Fukunishi, H. (2002). Observations of two types of Pc 1-2 pulsations in the outer dayside magnetosphere. J. Geophys. Res.: Space Phys., 107(A12), 1451. https://doi.org/10.1029/2001JA000198 |
Engebretson, M. J., Posch, J. L., Braun, D. J., Li, W., Ma, Q., Kellerman, A. C., Huang, C. L., Kanekal, S. G., Kletzing, C. A., … Baker, D. N. (2018). EMIC wave events during the four GEM QARBM challenge intervals. J. Geophys. Res.: Space Phys., 123(8), 6394–6423. https://doi.org/10.1029/2018JA025505 |
Evans, D. S., and M. S. Greer (2004), Polar orbiting Environmental Satellite Space Experiment Monitor-2: Instrument descriptions and archive data documentation, NOAA Technical Memorandum version 1.3. NOAA Space Environment Center, Boulder, Colo.222 |
Ferradas, C. P., Zhang, J. C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G., Skoug, R., and Funsten, H. (2016). Ion nose spectral structures observed by the Van Allen Probes. J. Geophys. Res. Space Phys., 121(12), 12025–12046. https://doi.org/10.1002/2016JA022942 |
Fok, M. C., Khazanov, G. V., Krivorutsky, E. N., and Glocer, A. (2016). Convective growth of electromagnetic ion cyclotron waves from realistic ring current ion distributions. J. Geophys. Res.: Space Phys., 121(11), 10966–10977. https://doi.org/10.1002/2016JA022964 |
Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., Lake, J. E., .. Chen J. (2013). Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the Radiation Belt Storm Probes mission. Space Sci. Rev., 179, 423–484. https://doi.org/10.1007/s11214-013-9968-7 |
Green, J. (2013). MEPED telescope data processing theoretical basis document version 1.0, NOAA Technical Memorandum, version 1.0. Available at http://www.ngdc.noaa.gov/stp/satellite/poes/documentation.html.222 |
Hudson, M. K., Baker, D. N., Goldstein, J., Kress, B. T., Paral, J., Toffoletto, F. R., and Wiltberger, M. (2014). Simulated magnetopause losses and Van Allen Probe flux dropouts. Geophys. Res. Lett., 41(4), 1113–1118. https://doi.org/10.1002/2014GL059222 |
Jordanova, V. K., Albert, J., and Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC waves from self-consistent global simulations. J. Geophys. Res.: Space Phys., 113(A3), A00A10. https://doi.org/10.1029/2008JA013239 |
Katsavrias, C., Daglis, I. A., Turner, D. L., Sandberg, I., Papadimitriou, C., Georgiou, M., and Balasis, G. (2015). Nonstorm loss of relativistic electrons in the outer radiation belt. Geophys. Res. Lett., 42(24), 10521–10530. https://doi.org/10.1002/2015GL066773 |
Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., and Grew, R. S. (2014). Electron losses from the radiation belts caused by EMIC waves. J. Geophys. Res.: Space Phys., 119(11), 8820–8837. https://doi.org/10.1002/2014JA020366 |
Kim, H. J., and Chan, A. A. (1997). Fully adiabatic changes in storm time relativistic electron fluxes. J. Geophys. Res.: Space Phys., 102(A10), 22107–22116. https://doi.org/10.1029/97JA01814 |
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., .. Tyler, J. (2013). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6 |
Li, W., Shprits, Y. Y., and Thorne, R. M. (2007). Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J. Geophys. Res.: Space Phys., 112(A10), A10220. https://doi.org/10.1029/2007JA012368 |
Li, X. L., Temerin, M., Baker, D. N., Reeves, G. D., and Larson, D. (2001). Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys. Res. Lett., 28(9), 1887–1890. https://doi.org/10.1029/2000GL012681 |
Liu, N. G., Su, Z. P., Gao, Z. L., Zheng, H. N., Wang, Y. M., and Wang, S. (2020). Can solar wind decompressive discontinuities suppress magnetospheric electromagnetic ion cyclotron waves associated with fresh proton injections?. Geophys. Res. Lett., 47(17), e2020GL090296. https://doi.org/10.1029/2020GL090296 |
Lorentzen, K. R., Blake, J. B., Inan, U. S., and Bortnik, J. (2001). Observations of relativistic electron microbursts in association with VLF chorus. Journal of Geophysical Research, 106(A4), 6017–6027. https://doi.org/10.1029/2000JA003018 |
Loto'aniu, T. M., Mann, I. R., Ozeke, L. G., Chan, A. A., Dent, Z. C., and Milling, D. K. (2006). Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J. Geophys. Res.: Space Phys., 111(A4), A04218. https://doi.org/10.1029/2005JA011355 |
Lyatsky, W., and Khazanov, G. V. (2007). Prediction of geomagnetic activity and key parameters in high-latitude ionosphere–basic elements. NASA/TP-2007-215079, Washington, DC: NASA, 29.222 |
Lyatsky, W., and Khazanov, G. V. (2008). Effect of solar wind density on relativistic electrons at geosynchronous orbit. Geophys. Res. Lett., 35(3), L03109. https://doi.org/10.1029/2007GL032524 |
Ma, X., Xiang, Z., Ni, B. B., Fu, S., Cao, X., Hua, M., Guo, D. Y., Guo, Y. J., Gu, X. D., Liu, Z. Y. and Zhu, Q. (2020). On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm. Earth Planet. Phys., 4(6), 598–610. https://doi.org/10.26464/epp2020060 |
Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., and Anderson, R. R. (2004). Substorm dependence of plasmaspheric hiss. J. Geophys. Res.: Space Phys., 109(A9), A06209. https://doi.org/10.1029/2004JA010387 |
Millan, R. M., and Thorne, R. M. (2007). Review of radiation belt relativistic electron losses. J. Atmos. Sol. Terr. Phys., 69(3), 362–377. https://doi.org/10.1016/j.jastp.2006.06.019 |
Morley, S. K., Friedel, R. H. W., Cayton, T. E., and Noveroske, E. (2010). A rapid, global and prolonged electron radiation belt dropout observed with the Global Positioning System constellation. Geophys. Res. Lett., 37(6), L06102. https://doi.org/10.1029/2010GL042772 |
Mozer, F. S., Agapitov, O. V., Hull, A., Lejosne, S., and Vasko, I. Y. (2017). Pulsating auroras produced by interactions of electrons and time domain structures. J. Geophys. Res.: Space Phys., 122(8), 8604–8616. https://doi.org/10.1002/2017JA024223 |
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 3–27. https://doi.org/10.1007/s11214-012-9908-y |
Ni, B. B., Shprits, Y. Y., Friedel, R., H. W., Thorne, R. M., Daae, M., and Chen, Y. (2013). Responses of Earth's radiation belts to solar wind dynamic pressure variations in 2002 analyzed using multisatellite data and Kalman filtering. J. Geophys. Res.: Space Phys., 118(7), 4400–4414. https://doi.org/10.1002/jgra.50437 |
Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., Blake, J. B., Christensen, R. A., and Thomsen, D. (2011). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. J. Geophys. Res.: Space Phys., 116(A2), A02213. https://doi.org/10.1029/2010JA015735 |
Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N., and Kanekal, S. G. (2006). Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res.: Space Phys., 111(A11), A11214. https://doi.org/10.1029/2006JA011657 |
Shprits, Y. Y., Kellerman, A., Aseev, N., Drozdov, A. Y., and Michaelis, I. (2017). Multi-MeV electron loss in the heart of the radiation belts. Geophys. Res. Lett., 44(3), 1204–1209. https://doi.org/10.1002/2016GL072258 |
Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2011). CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys. Res. Lett., 38(6), L06106. https://doi.org/10.1029/2011GL046873 |
Su, Z. P., Xiao, F. L., Zheng, H. N., He, Z. G., Zhu, H., Zhang, M., Shen, C., Wang, Y. M., Wang, S., … Hospodarsky, G. B. (2014). Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes. Geophys. Res. Lett., 41(2), 229–235. https://doi.org/10.1002/2013GL058912 |
Su, Z. P., Zhu, H., Xiao, F. L., Zong, Q. G., Zhou, X. Z., Zheng, H. N., Wang, Y. M., Wang, S., Hao, Y. X., … Wygant, J. R. (2015). Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons. Nat. Commun., 6, 10096. https://doi.org/10.1038/ncomms10096 |
Su, Z. P., Gao, Z. L., Zhu, H., Li, W., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., … Wygant, J. R. (2016). Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J. Geophys. Res.: Space Phys., 121(7), 6400–6416. https://doi.org/10.1002/2016JA022546 |
Summers, D., and Thorne, R. M. (2003). Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res.: Space Phys., 108(A4), 1143. https://doi.org/10.1029/2002JA009489 |
Teng, S. C., Li, W., Tao, X., Ma, Q. L., Wu, Y., Capannolo, L., Shen, X. C., and Gan, L. Z. (2019). Generation and characteristics of unusual high frequency EMIC waves. Geophys. Res. Lett., 46(24), 14230–14238. https://doi.org/10.1029/2019GL085220 |
Tu, W. C., Li, W., Albert, J. M., and Morley, S. K. (2019). Quantitative assessment of radiation belt modeling. J. Geophys. Res.: Space Phys., 124(2), 898–904. https://doi.org/10.1029/2018JA026414 |
Turner, D. L., Shprits, Y., Hartinger, M., and Angelopoulos, V. (2012). Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys., 8(3), 208–212. https://doi.org/10.1038/nphys2185 |
Turner, D. L., Kilpua, E. K. J., Hietala, H., Claudepierre, S. G., O'Brien, T. P., Fennell, J. F., Blake, J. B., Jaynes, A. N., Kanekal, S., … Reeves, G. D. (2019). The response of Earth's electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes era including effects from different storm drivers. J. Geophys. Res.: Space Phys., 124(2), 1013–1034. https://doi.org/10.1029/2018JA026066 |
Usanova, M. E., Mann, I. R., Rae, I. J., Kale, Z. C., Angelopoulos, V., Bonnell, J. W., Glassmeier, K. H., Auster, H. U., and Singer, H. J. (2008). Multipoint observations of magnetospheric compression-related EMIC Pc1 waves by THEMIS and CARISMA. Geophys. Res. Lett., 35(17), L17S25. https://doi.org/10.1029/2008GL034458 |
Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., … Wygant, J. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations. Geophys. Res. Lett., 41(5), 1375–1381. https://doi.org/10.1002/2013GL059024 |
Vampola, A. L. (1998). Outer zone energetic electron environment update, in Proceedings of the Conference on the High Energy Radiation Background in Space, pp. 128–136, Inst. of Electr. and Electr. Eng., New York.222 |
Wang, D. D., Shprits, Y. Y., Zhelavskaya, I. S., Effenberger, F., Castillo, A. M., Drozdov, A. Y., Aseev, N. A., and Cervantes, S. (2020). The effect of plasma boundaries on the dynamic evolution of relativistic radiation belt electrons. J. Geophys. Res.: Space Phys., 125(5), e2019JA027422. https://doi.org/10.1029/2019JA027422 |
Xiang, Z., Tu, W. C., Li, X. L., Ni, B. B., Morley, S. K., and Baker, D. N. (2017). Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes. J. Geophys. Res.: Space Phys., 122(10), 9858–9879. https://doi.org/10.1002/2017JA024487 |
Xiang, Z., Tu, W. C., Ni, B. B., Henderson, M. G., and Cao, X. (2018). A statistical survey of radiation belt dropouts observed by Van Allen Probes. Geophys. Res. Lett., 45(16), 8035–8043. https://doi.org/10.1029/2018GL078907 |
Xiong, Y., Xie, L., Pu, Z. Y., Fu, S. Y., Chen, L. J., Ni, B. B., Li, W., Li, J. X., Guo, R. L., and Parks, G. K. (2015). Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms. J. Geophys. Res.: Space Phys., 120(11), 9513–9523. https://doi.org/10.1002/2015JA021440 |
Zhang, J. C., Saikin, A. A., Kistler, L. M., Smith, C. W., Spence, H. E., Mouikis, C. G., Torbert, R. B., Larsen, B. A., Reeves, G. D., … Jordanova, V. K. (2014). Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013. Geophys. Res. Lett., 41(12), 4101–4108. https://doi.org/10.1002/2014GL060621 |
[1] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[2] |
BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001 |
[3] |
ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012 |
[4] |
Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060 |
[5] |
XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024 |
[6] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[7] |
ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033 |
[8] |
ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037 |
[9] |
P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049 |
[10] |
AiBing Zhang, LingGao Kong, WenYa Li, Lei Li, BinBin Tang, ZhaoJin Rong, Yong Wei, JiJie Ma, YiTeng Zhang, LiangHai Xie, YuXian Wang, JianSen He, Bin Liu, WenJing Wang, Bin Su, JiaWei Li, Xu Tan, Fang Wang, TaiFeng Jin, FuHao Qiao, Peter Wurz, Yan Zhu, YunFei Bai, YiRen Li, XinBo Zhu, YueQiang Sun, YongLiao Zou, Chi Wang, 2022: Tianwen-1 MINPA observations in the solar wind, Earth and Planetary Physics, 6, 1-9. doi: 10.26464/epp2022014 |
[11] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[12] |
Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029 |
[13] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[14] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[15] |
Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022 |
[16] |
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006 |
[17] |
Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020 |
[18] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[19] |
Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004 |
[20] |
ShuYang Yu, Jian Rao, Dong Guo, 2022: Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling, Earth and Planetary Physics, 6, 177-190. doi: 10.26464/epp2022015 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)