Citation:
Yang, C. W., Wang, C. H., Gao, G. Y., and Wang, P. (2022). Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton. Earth Planet. Phys., 6(1), 123–134. http://doi.org/10.26464/epp2022001
2022, 6(1): 123-134. doi: 10.26464/epp2022001
Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton
1. | National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China |
2. | School of Civil Engineering, Tianjin University, Tianjin 300072, China |
The Mesozoic Yanshanian Movement affected the tectonic evolution of the North China Craton (NCC). It is proposed that Mesozoic cratonic destruction peaked ~125 Ma, possibly influenced by subduction of the western Pacific Plate beneath the Euro-Asian Plate in the Early Cretaceous. The southern Jinzhou area in the eastern block of the NCC preserves clues about the tectonic events and related geological resources. Studies of the regional stress field evolution from the Cretaceous to the Cenozoic can enhance our understanding of the tectonics and dynamics of the NCC. Borehole image logging technology was used to identify and collect attitudes of tensile fractures from 11 boreholes; these were subdivided into four groups according to dip direction, i.e., NNW-SSE, NWW-SEE, W-E and NE-SW. The development of these fractures was controlled primarily by the regional tectonic stress field; temperature, lithology, and depth contributed to some extent. In 136–125 Ma in the Early Cretaceous, the area was characterized by extension that was oriented NNW-SSE and NWW-SEE; from 125–101 Ma the extension was oriented W-E; after 101 Ma it was NE-SW. This counterclockwise trend has persisted to the present, probably related to oblique subduction of the Pacific Plate, and is characterized by ongoing extension that is nearly N-S-oriented and NEE-SWW-oriented compression.
Abdelmalak, M. M., Mourgues, R., Galland, O., and Bureau, D. (2012). Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2D experimental modelling. Earth Planet. Sci. Lett. , 359–360, 93–105.222 |
Arlegui, L., and Simón, J. L. (2001). Geometry and distribution of regional joint sets in a non-homogeneous stress field: case study in the Ebro basin (Spain). J. Struct. Geol., 23(2–3), 297–313. https://doi.org/10.1016/S0191-8141(00)00097-3 |
Bai, T. X., and Pollard, D. D. (2000). Fracture spacing in layered rocks: a new explanation based on the stress transition. J. Struct. Geol., 22(1), 43–57. https://doi.org/10.1016/S0191-8141(99)00137-6 |
Bai, T. X., Maerten, L., Gross, M. R., and Aydin, A. (2002). Orthogonal cross joints: do they imply a regional stress rotation. J. Struct. Geol., 24(1), 77–88. https://doi.org/10.1016/S0191-8141(01)00050-5 |
Becker, A., and Gross, M. R. (1996). Mechanism for joint saturation in mechanically layered rocks: An example from southern Israel. Tectonophysics, 257(2-4), 223–237. https://doi.org/10.1016/0040-1951(95)00142-5 |
Brereton, R., Muller, B., Hancock, P., Harper, T., Bott, M. H. P., Sanderson, D., and Kusznir, N. (1991). European stress: Contributions from borehole breakouts [and Discussion]. Philos. Trans. :Phys. Sci. Eng., 337(1645), 165–179. |
Caristan, Y. (1982). The transition from high temperature creep to fracture in Maryland diabase. J. Geophys. Res. :Solid Earth, 87(B8), 6781–6790. https://doi.org/10.1029/JB087iB08p06781 |
Carvalho, J. M. F. (2018). Jointing patterns and tectonic evolution of the Maciço Calcário Estremenho, Lusitanian Basin, Portugal. J. Struct. Geol., 110, 155–171. https://doi.org/10.1016/j.jsg.2018.03.004 |
Clerke, E. A. (1989). Borehole televiewer mudcake monitor. J. Acoust. Soc. Am., 85(4), 1807. https://doi.org/10.1121/1.397898 |
Cui, S. X., and Wang, H. L. (2011). Analytical study on results of acoustic downhole television in SICOMINES Cu-Co mining area of Congo. Site Invest. Sci. Technol. (in Chinese) |
Dai, Y. L., Wan, Y. G., Liang, Y. D., Zhang, W. J., and Hui, Y. (2020). Present tectonic stress field in Liaoning area based on earthquake focal mechanisms. Earthquake, 40(3), 112–130. https://doi.org/10.12196/j.issn.1000-3274.2020.03.009 |
Engelder, T., and Geiser, P. (1980). On the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian Plateau, New York. J. Geophys. Res. :Solid Earth, 85(B11), 6319–6341. https://doi.org/10.1029/JB085IB11P06319 |
Eyal, Y., Gross, M. R., Engelder, T., and Becker, A. (2001). Joint development during fluctuation of the regional stress field in southern Israel. J. Struct. Geol., 23(2-3), 279–296. https://doi.org/10.1016/S0191-8141(00)00096-1 |
Fang, H. H., Sang, S. X., Wang, J. L., Liu, S. Q., and Ju, W. (2017). Simulation of paleotectonic stress fields and distribution prediction of tectonic fractures at the Hudi Coal Mine, Qinshui Basin. Acta Geol. Sin., 91(6), 2007–2023. https://doi.org/10.1111/1755-6724.13447 |
Fang, L. P. (2015). The application of Acoustic Television in KOLWEZI of Democratic Republic of Congo. Ground Water, 37(2), 112–114. https://doi.org/10.3969/j.issn.1004-1184.2015.02.043 |
Faure, M., Lin, W., and Chen, Y. (2012). Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block. Terra Nova, 24(6), 456–466. https://doi.org/10.1111/ter.12002 |
Gao, J. W., Lin, Y., Zhang, C. H., Ding, Z. Y., Hou, L. Y., and Huang, Y. Z. (2019). Late Mesozoic Paleotectonic stress fields inferred from fault-slip data in central and western Yanshan Orogenic Belt: Implications for destructive geodynamics of North China Craton. Geoscience, 33(5), 919–936. https://doi.org/10.19657/j.geoscience.1000-8527.2019.05.01 |
Hancock, P. L., and Engelder, T. (1989). Neotectonic joints. GSA Bull., 101(10), 1197–1208. https://doi.org/10.1130/0016-7606(1989)101<1197:NJ>2.3.CO;2 |
He, J., Wu, K., Zhang, J. T., and Peng, J. S. (2018). Cenozoic strike-slip fault system and its generating mechanism for Liaodong bay depression. Petrol. Geol. Oilfield Dev. Daqing (in Chinese) |
Hou, Q. L., Liu, Q., Zhang, H. Y., Zhang, X. H., and Li, J. (2012). The Mesozoic tectonic dynamics and chronology in the eastern North China block. J. Geol. Res., 2012, 291467. https://doi.org/10.1155/2012/291467 |
Hu, X. P., Zang, A., Heidbach, O., Cui, X. F., Xie, F. R., and Chen, J. W. (2017). Crustal stress pattern in China and its adjacent areas. J. Asian Earth Sci., 149, 20–28. https://doi.org/10.1016/j.jseaes.2017.07.005 |
Hu, Z. W., Wang, D. Y., Niu, C. M., Yang, H. F., Xu, C. Q., Liu, Y. B., Ren, J., and Kang, L. (2019a). Characteristics of fault system and evaluation of hydrocarbon generation potential in western Liaoxi-Qinnan area, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed. ) |
Hu, Z. W., Xu, C. G., Wang, D. Y., Ren, J., Liu, Y. B., Xiao, S. G., and Zhou, X. (2019b). Superimposed characteristics and genetic mechanism of strike-slip faults in the Bohai Sea, China. Petrol. Exp. Dev., 46(2), 254–267. https://doi.org/10.11698/PED.2019.02.06 |
Jiang, L., Qiu, Z., Wang, Q. C., Guo, Y. S., Wu, C. F., Wu, Z. J., and Xue, Z. H. (2016). Joint development and tectonic stress field evolution in the southeastern Mesozoic Ordos Basin, west part of North China. J. Asian Earth Sci., 127, 47–62. https://doi.org/10.1016/j.jseaes.2016.06.017 |
Jiang, S. E., Zhang, G. R., Pan, Y. Q., Lu, H. F., Wang, H. P., and Cheng, P. Q. (2010). Mesozoic intrusive rocks in western Liaoning: Basic characteristics and their relations to the tectonic movement. Geol. Resour., 19(1), 22–31. https://doi.org/10.3969/j.issn.1671-1947.2010.01.004 |
Juhlin, C., and Stephens, M. B. (2006). Gently dipping fracture zones in Paleoproterozoic metagranite, Sweden: Evidence from reflection seismic and cored borehole data and implications for the disposal of nuclear waste. J. Geophys. Res. :Solid Earth, 111(B9), B09302. https://doi.org/10.1029/2005JB003887 |
Li, W., Ping, M. M., Zhou, D. H., Wu, K., Zhang, J., Fang, L., and Chen, X. P. (2018). Estimation of the Cenozoic strike-slip displacement for major faults in the Liaodong bay depression and its geological significance. Geotecton. Metall., 42(3), 445–454. https://doi.org/10.16539/j.ddgzyckx.2018.03.003 |
Li, W., Qi, J. Q., Zhou, D. H., Wu, K., Chen, X. P., and Guo, R. P. (2019). Formation and evolution of Liaoxi dome, Liaodong bay depression. Geotecton. Metall., 43(5), 911–923. https://doi.org/10.16539/j.ddgzyckx.2019.05.003 |
Li, Z., Li, Y., Zheng, J. P., and Han, D. (2007). Late Mesozoic tectonic transition of the eastern North China Craton: evidence from basin-fill records. Geol. Soc. Lond. Spe. Publ., 280(1), 239–265. https://doi.org/10.1144/SP280.12 |
Lin, Y., Zhang, C. H., Li, C. M., and Shi, X. L. (2015). Paleotectonic stress field and its evolution in central part of the Intraplate Yanshan Orogenic belt during Middle Jurassic and Early Cretaceous: Constrains of stress inversion of fault slip vectors. Geotecton. Metall., 39(2), 187–207. https://doi.org/10.3969/j.issn.1001-1552.2015.02.001 |
Liu, J. L., Davis, G. A., Ji, M., Guan, H. M., and Bai, X. D. (2008). Crustal detachment and destruction of the keel of North China Craton: Constraints from Late Mesozoic extensional structures. Earth Sci. Front., 15(3), 72–81. https://doi.org/10.1016/S1872-5791(08)60063-9 |
Liu, J. Y, Li, Q., Zhu, J. C., Wang, Y., and Xie, H. (2018). Geological evolution of the Liaoning area. Reg. Govern. (11), 274,276. |
Liu, J. Z., Liu, X. S., Zhang, F. Q., Li, S. X., Li, G. L., and Ouyang, Z. Y. (2000). Characteristics and genesis of granitic complex in Fuxin-Jinzhou area, Liaoning province. Geol. Geochem., 28(4), 65–74. https://doi.org/10.3969/j.issn.1672-9250.2000.04.012 |
Liu, S. F., Su, S., and Zhang, G. W. (2013). Early Mesozoic basin development in North China: indications of cratonic deformation. J. Asian Earth Sci., 62, 221–236. https://doi.org/10.1016/j.jseaes.2012.09.011 |
Liu, S. F., Gurnis, M., Ma, P. F., and Zhang, B. (2017). Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. Earth-Sci. Rev., 175, 114–142. https://doi.org/10.1016/j.earscirev.2017.10.012 |
Liu, S. F., Zhang, A. D., Lin, C. F., Zhang, B., Yuan, H. T., Huang, D. Y., Steel, R. J., and Horton, B. K. (2021). Thrust duplexing and transpression in the Yanshan Mountains: Implications for early Mesozoic orogenesis and decratonization of the North China Craton. Basin Res., 33(4), 2303–2327. https://doi.org/10.1111/BRE.12558 |
Ma, Y. (2004). Meso-Cenozoic Basin-Range Structures and Stress Field Evolution of the Eastern Yanshan-Lower Liaohe Basin (in Chinese). Beijing: Geological Publishing House.222 |
MacLeod, C. J. , Parson, L. M. , and Sager, W. W. (1994). Reorientation of cores using the formation microscanner and borehole televiewer: application to structural and paleomagnetic studies with the Ocean Drilling Program. Proceedings of the Ocean Drilling Program, Scientific Results, 135, 301–311.222 |
Morin, R. H., Newmark, R. L., Barton, C. A., and Anderson, R. N. (1990). State of lithospheric stress and borehole stability at Deep Sea Drilling Project Site 504B, eastern equatorial Pacific. J. Geophys. Res. :Solid Earth, 95(B6), 9293–9303. https://doi.org/10.1029/JB095iB06p09293 |
Nie, X., Zou, C. C., Pan, L., Huang, Z. H., and Liu, D. M. (2013). Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50-1370m). Tectonophysics, 593, 161–171. https://doi.org/10.1016/j.tecto.2013.03.005 |
Plumb, R. A., and Hickman, S. H. (1985). Stress-induced borehole elongation: A comparison between the four-arm dipmeter and the borehole televiewer in the Auburn Geothermal Well. J. Geophys. Res. :Solid Earth, 90(B7), 5513–5521. https://doi.org/10.1029/JB090iB07p05513 |
Pollard, D. D., and Aydin, A. (1988). Progress in understanding jointing over the past century. GSA Bull., 100(8), 1181–1204. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2 |
Price, N. J., and Cosgrove, J. W. (1990). Analysis of Geological Structures. Cambridge: Cambridge University Press.222 |
Seeburger, D. A., and Zoback, M. D. (1982). The distribution of natural fractures and joints at depth in crystalline rock. J. Geophys. Res. :Solid Earth, 87(B7), 5517–5534. https://doi.org/10.1029/JB087iB07p05517 |
Shalaby, A. (2017). Fracture patterns of the drainage basin of Wadi Dahab in relation to tectonic-landscape evolution of the Gulf of Aqaba-Dead Sea transform fault. J. Asian Earth Sci., 148, 192–209. https://doi.org/10.1016/j.jseaes.2017.08.035 |
Shao, J. A., Mu, B. L., and Zhang, L. Q. (2000). Deep geological process and its shallow response during Mesozoic transfer of tectonic frameworks in eastern North China. Geol. Rev., 46(1), 32–40. https://doi.org/10.3321/j.issn:0371-5736.2000.01.005 |
Shao, J. A., Lu, F. X., Zhang, L. Q., and Shi, G. H. (2006). Temporal and spatial evidences for Early Cretaceous disturbance of the lithosphere beneath North China. Acta Petrol. Sin., 22(2), 277–284. https://doi.org/10.3969/j.issn.1000-0569.2006.02.002 |
Shi, Y. Y., Shang, Y. J., Sun, Y. C., and Wang, C. H. (2010). Applications of acoustic borehole televiewer in geotechnical investigation. Geotech. Invest. Surv. (in Chinese) |
Stone, D., Kamineni, D. C., Brown, A., and Everitt, R. (1989). A comparison of fracture styles in two granite bodies of the Superior province. Can. J. Earth Sci., 26(2), 387–403. https://doi.org/10.1139/e89-036 |
Tang, Q. S., and Chen, L. (2008). Structure of the crust and uppermost mantle of the Yanshan Belt and adjacent regions at the northeastern boundary of the North China Craton from Rayleigh wave dispersion analysis. Tectonophysics, 455(1-4), 43–52. https://doi.org/10.1016/j.tecto.2008.04.021 |
Wang, G. H., Zhang, C. H., Wang, G. S., and Wu, Z. W. (2001). Tectonic framework of western Liaoning province and its evolution during Mesozoic. Geoscience (in Chinese) |
Wang, Y. (1996). Orogenic Process of the Inner Mongolia-Yanshanian Orogenic Bet from Later Paleozoic to Mesozoic, Eastern China (in Chinese). Beijing: Geological Publishing House.222 |
Wong, W. H. (1927). Crustal movements and igneous activities in eastern China since Mesozoic time. Bull. Geol. Soc. China, 6(1), 9–37. https://doi.org/10.1111/j.1755-6724.1927.mp6001002.x |
Wu, F. Y., Yang, J. H., Zhang, Y. B., and Liu, X. M. (2006). Emplacement ages of the Mesozoic granites in southeastern part of the Western Liaoning province. Acta Petrol. Sin., 22(2), 315–325. https://doi.org/10.3969/j.issn.1000-0569.2006.02.006 |
Xu, X. C., Zheng, C. Q., and Cui, F. H. (2017). Geochronology and Petrogenesis of Mesozoic Granitoids in the geological corridor of western Liaoning province, China. Acta Geol. Sin., 91(S1), 46–48. https://doi.org/10.1111/1755-6724.13176 |
Xu, Y. G., Li, H. Y., Pang, C. J., and He, B. (2009). On the timing and duration of the destruction of the North China Craton. Chin. Sci. Bull., 54(19), 3379–3396. https://doi.org/10.1007/s11434-009-0346-5 |
Yang, W. (2007). Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Constraints on mechanism for the lithospheric thinning in the North China Craton (in Chinese). Hefei: University of Science and Technology of China.222 |
Yang, W., and Li, S. G. (2008). Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 102(1-2), 88–117. https://doi.org/10.1016/j.lithos.2007.09.018 |
Yang, Z. , Chen, S. , and Dong, W. (2017). Regional Geology in Liaoning Province (in Chinese). Beijing: Geological Publishing House.222 |
Zhai, M. G., and Fan, Q. C. (2002). Mesozoic replacement of bottom crust in North China Craton: anorogenic mantle-crust interaction. Acta Petrol. Sin., 18(1), 1–8. https://doi.org/10.3969/j.issn.1000-0569.2002.01.001 |
Zhai, M. G., Meng, Q. R., Liu, J. M., Hou, Q. L., Hu, S. B., Li, Z., Zhang, H. F., Liu, W., Shao, J. A., and Zhu, R. X. (2004). Geological features of Mesozoic tectonic regime inversion in Eastern North China and implication for geodynamics. Earth Sci. Front., 11(3), 285–297. https://doi.org/10.3321/j.issn:1005-2321.2004.03.027 |
Zhai, M. G. (2019). Tectonic evolution of the North China Craton. J. Geomech., 25(5), 722–745. https://doi.org/10.12090/j.issn.1006-6616.2019.25.05.063 |
Zhang, C. H., Song, H. L., Wang, G. H., Yan, D. P., and Sun, W. H. (2001). Mesozoic dextral strike-slip structural system in middle segment of Intraplate Yanshan Orogenic Belt, Northern China. Earth Sci. -J. China Univ. Geosci., 26(5), 464–472. https://doi.org/10.3321/j.issn:1000-2383.2001.05.004 |
Zhang, J., Wu, Z. P., Li, W., Xiao, Y., and Qi, J. Q. (2017). Cenozoic tectonic characteristics and evolution of Liaodong bay depression. Mar. Geol. Front., 33(11), 9–17. https://doi.org/10.16028/j.1009-2722.2017.11002 |
Zhang, Z. J., Chen, Q. F., Bai, Z. M., Chen, Y., and Badal, J. (2011). Crustal structure and extensional deformation of thinned lithosphere in Northern China. Tectonophysics, 508(1-4), 62–72. https://doi.org/10.1016/j.tecto.2010.06.021 |
Zhao, G. C., Sun, M., Wilde, S. A., and Li, S. Z. (2005). Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precam. Res., 136(2), 177–202. https://doi.org/10.1016/j.precamres.2004.10.002 |
Zhao, Y. (1990). The Mesozoic orogenies and tectonic evolution of the Yanshan area. Geol. Rev., 36(1), 1–13. https://doi.org/10.3321/j.issn:0371-5736.1990.01.001 |
Zhao, Y., Yang, Z., and Ma, X. (1994). Major transition of tectonics of eastern Asia. Scientia Geologica Sinica, 29(2), 105–119. |
Zhao, Y., Cui, S. Q., Guo, T., and Xu, G. (2002). Evolution of a Jurassic basin of the Western Hills, Beijing, North China and its tectonic implications. Geol. Bull. China, 21(4), 211–217. https://doi.org/10.3969/j.issn.1671-2552.2002.04.006 |
Zheng, T. Y., Chen, L., Zhao, L., and Zhu, R. X. (2007). Crustal structure across the Yanshan belt at the northern margin of the North China Craton. Phys. Earth Planet. Inter., 161(1-2), 36–49. https://doi.org/10.1016/j.pepi.2007.01.004 |
Zheng, Y. D., Davis, G. A., Wang, C., Darby, B. J., and Zhang, C. H. (2000). Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geol. Sin., 74(4), 289–302. https://doi.org/10.3321/j.issn:0001-5717.2000.04.001 |
Zhu, R. X., Chen, L., Wu, F. Y., and Liu, J. L. (2011). Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci., 54(6), 789–797. https://doi.org/10.1007/s11430-011-4203-4 |
Zhu, R. X., Xu, Y. G., Zhu, G., Zhang, H. F., Xia, Q. K., and Zheng, T. Y. (2012). Destruction of the North China Craton. Sci. China Earth Sci., 55(10), 1565–1587. https://doi.org/10.1007/s11430-012-4516-y |
Zhu, R. X., Fan, H. R., Li, J. W., Meng, Q. R., Li, S. R., and Zeng, Q. D. (2015). Decratonic gold deposits. Sci. China Earth Sci., 58(9), 1523–1537. https://doi.org/10.1007/s11430-015-5139-x |
Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: The world stress map project. J. Geophys. Res. :Solid Earth, 97(B8), 11703–11728. https://doi.org/10.1029/92JB00132 |
[1] |
TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004 |
[2] |
ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao, 2022: Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton, Earth and Planetary Physics, 6, 191-203. doi: 10.26464/epp2022016 |
[3] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
[4] |
JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024 |
[5] |
Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026 |
[6] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[7] |
YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015 |
[8] |
LeLin Xing, ZiWei Liu, JianGang Jia, ShuQing Wu, ZhengSong Chen, XiaoWei Niu, 2021: Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in China continent, Earth and Planetary Physics, 5, 141-148. doi: 10.26464/epp2021018 |
[9] |
HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006 |
[10] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[11] |
JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002 |
[12] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[13] |
YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015 |
[14] |
Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052 |
[15] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[16] |
JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045 |
[17] |
YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028 |
[18] |
Elizabeth A. Silber, 2018: Deployment of a short-term geophysical field survey to monitor acoustic signals associated with the Windsor Hum, Earth and Planetary Physics, 2, 351-358. doi: 10.26464/epp2018032 |
[19] |
JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017 |
[20] |
Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)