Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Huang, Y. Y., Cui, J., Li, H. J., and Li, C. Y. (2022). Inter-annual variations of 6.5-day planetary waves and their relations with QBO. Earth Planet. Phys., 6(2), 135–148.

2022, 6(2): 135-148. doi: 10.26464/epp2022005


Inter-annual variations of 6.5-day planetary waves and their relations with QBO


National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China


State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100101, China


CAS Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China


Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China


School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China


College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China


LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: YingYing Huang,

Received Date: 2021-07-19
Web Publishing Date: 2022-01-25

This paper studies inter-annual variations of 6.5-Day Waves (6.5DWs) observed at altitudes 20−110 km between 52°S−52°N latitudes during March 2002−January 2021, and how these variations were related to the equatorial stratospheric Quasi-Biennial Oscillation (QBO). Temperature amplitudes of the 6.5DWs are calculated based on SABER/TIMED observations. QBO zonal winds are obtained from an ERA5 reanalysis dataset. QBO phases are derived using an Empirical Orthogonal Functions (EOF) method. Wavelet analysis of the observed 6.5DW variations demonstrates obvious spectral maximums around 28−38 months at 32°N−52°N, and around 26−30 months at 32°S−52°S. In the Northern Hemisphere, peak periods lengthened poleward; in the Southern Hemisphere, however, they were unchanged with latitude. Residual 6.5DWs amplitudes have been determined by removing composite amplitudes from 6.5DWs amplitudes. Comparisons between QBO and monthly maximum residual 6.5DWs amplitudes ($ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $) show clear correlations between the QBO and 6.5DWs in both hemispheres, but the observed relationship is stronger in the NH. When $ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $ were large in the NH, the mean QBO profile was easterly at all levels from 70 to 5 hPa; when the $ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $ were weak, the mean QBO wind was weak westerly below 30 hPa. Linear Pearson correlation coefficients between QBO phases and $ {A}_{\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{x}} $ show large positive values at 60−110 km between 20°N−52°N in April and around 64 km at 24°S in February, and large negative values from 80 to 110 km between 20°N−50°N in August and at 96−106 km between 20°S−44°S in February. These results indicate quantitative correlations between QBO and 6.5DWs and provide credible evidences for further studies of QBO modulations on long-term variations of 6.5DWs.

Key words: planetary wave, quasi-biennial osillations, wave-flow interactions, satellite observation

Anstey, J. A., Shepherd, T. G., and Scinocca, J. F. (2010). Influence of the quasi-biennial oscillation on the extratropical winter stratosphere in an atmospheric general circulation model and in reanalysis data. J. Atmos. Sci., 67(5), 1402–1419.

Anstey, J. A., and Shepherd, T. G. (2014). High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140(678), 1–21.

Bai, X. Y., Huang, K. M., Zhang, S. D., Huang, C. M. and Gong, Y. (2021). Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis. Earth Planet. Phys., 5(3), 280–289.

Balachandran, N. K., and Rind, D. (1995). Modeling the effects of UV variability and the QBO on the troposphere–stratosphere system. Part I: the middle atmosphere. J. Climate, 8(8), 2058–2079.<2058:MTEOUV>2.0.CO;2

Baldwin, M. P., and Dunkerton, T. J. (1989). Observations and statistical simulations of a proposed solar cycle/QBO/weather relationship. Geophys. Res. Lett., 16(8), 863–866.

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., … Takahashi, M. (2001). The quasi-biennial oscillation. Rev. Geophys., 39(2), 179–229.

Belova, A., Kirkwood, S., Murtagh, D., Mitchell, N., Singer, W., and Hocking, W. (2008). Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007. Ann. Geophys., 26(11), 3557–3570.

Boville, B. A. (1984). The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41(7), 1132–1142.<1132:TIOTPN>2.0.CO;2

Day, K. A., Taylor, M. J., and Mitchell, N. J. (2012). Mean winds, temperatures and the 16- and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42°N, 111°W). Atmos. Chem. Phys., 12(3), 1571–1585.

de Wit, R. J., Janches, D., Fritts, D. C., and Hibbins, R. E. (2016). QBO modulation of the mesopause gravity wave momentum flux over Tierra del Fuego. Geophys. Res. Lett., 43(8), 4049–4055.

Fraedrich, K., Pawson, S., and Wang, R. S. (1993). An EOF analysis of the vertical-time delay structure of the quasi-biennial oscillation. J. Atmos. Sci., 50(20), 3357–3365.<3357:AEAOTV>2.0.CO;2

Gan, Q., Yue, J., Chang, L. C., Wang, W. B., Zhang, S. D., and Du, J. (2015). Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere. Ann. Geophys., 33(7), 913–922.

García-Comas, M., López-Puertas, M., Marshall, B. T., Wintersteiner, P. P., Funke, B., Bermejo-Pantaleón, D., Mertens, C. J., Remsberg, E. E., Gordley, L. L., … Russell III, J. M. (2008). Errors in sounding of the atmosphere using broadband emission radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters. J. Geophys. Res.:Atmos., 113(D24), D24106.

Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W. (2012). Does the holton–tan mechanism explain how the quasi-biennial oscillation modulates the arctic polar vortex?. J. Atmos. Sci., 69(5), 1713–1733.

Gray, L. J., Phipps, S. J., Dunkerton, T. J., Baldwin, M. P., Drysdale, E. F., and Allen, M. R. (2001). A data study of the influence of the equatorial upper stratosphere on northern-hemisphere stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 127(576), 1985–2003.

Gu, S. Y., Ruan, H. B., Yang, C. Y., Gan, Q., Dou, X. K., and Wang, N. N. (2018). The morphology of the 6-day wave in both the neutral atmosphere and f region ionosphere under solar minimum conditions. J. Geophys. Res.:Space Phys., 123(5), 4232–4240.

Gu, S. Y., Dou, X. K., Yang, C. Y., Jia, M. J., Huang, K. M., Huang, C. M., and Zhang, S. D. (2019). Climatology and anomaly of the quasi-two-day wave behaviors during 2003–2018 austral summer periods. J. Geophys. Res.:Space Phys., 124(1), 544–556.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., …Thépaut, J. N. (2020). The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999–2049.

Holton, J. R., and Tan, H. C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37(10), 2200–2208.<2200:TIOTEQ>2.0.CO;2

Huang, Y. Y., Zhang, S. D., Yi, F., Huang, C. M., Huang, K. M., Gan, Q., and Gong, Y. (2013). Global climatological variability of quasi-two-day waves revealed by TIMED/SABER observations. Ann. Geophys., 31(6), 1061–1075.

Huang, Y. Y., Zhang, S. D., Li, C. Y., Li, H. J., Huang, K. M., and Huang, C. M. (2017). Annual and interannual variations in global 6.5DWs from 20 to 110 km during 2002-2016 observed by TIMED/SABER. J. Geophys. Res. :Space Phys., 122(8), 8985–9002.

Jiang, G., Xu, J. Y., Xiong, J., Ma, R., Ning, B., Murayama, Y., Thorsen, D., Gurubaran, S., Vincent, R. A., and Reid, I. (2008a). A case study of the mesospheric 6.5-day wave observed by radar systems. J. Geophys. Res.:Atmos., 113(D16), D16111.

Jiang, G., Xiong, J., Wan, W., Ning, B., and Liu, L. (2008b). Observation of 6.5-day waves in the MLT region over Wuhan. J. Atmos. Sol. Terr. Phys., 70(1), 41–48.

John, S. R., and Kumar, K. K. (2012). TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Climate Dyn., 39(6), 1489–1505.

Kim, Y. H., and Chun, H. Y. (2015). Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res.:Atmos., 120(3), 1065–1090.

Kishore, P., Namboothiri, S. P., Igarashi, K., Gurubaran, S., Sridharan, S., Rajaram, R., and Ratnam, M. V. (2004). MF radar observations of 6.5-day wave in the equatorial mesosphere and lower thermosphere. J. Atmos. Sol. Terr. Phys., 66(6-9), 507–515.

Laskar, F. I., Chau, J. L., Stober, G., Hoffmann, P., Hall, C. M., and Tsutsumi, M. (2016). Quasi-Biennial Oscillation Modulation of the Middle- and High-Latitude Mesospheric Semidiurnal Tides During August-September. J. Geophys. Res. :Space Phys., 121(5), 4869–4879.

Li, T., She, C. Y., Palo, S. E., Wu, Q., Liu, H. L., and Salby, M. L. (2008). Coordinated lidar and TIMED observations of the quasi-two-day wave during August 2002–2004 and possible quasi-biennial oscillation influence. Adv. Space Res., 41(9), 1463–1471.

Li, X., Wan, W. X., Ren, Z. P., Liu, L. B., and Ning, B. Q. (2015). The variability of nonmigrating tides detected from TIMED/SABER observations. J. Geophys. Res. :Space Phys., 120(12), 10793–10808.

Li, X., Wan, W. X., Cao, J. B., and Ren, Z. P. (2020). Wavenumber-4 spectral component extracted from TIMED/SABER observations. Earth Planet. Phys., 4(5), 436–448.

Li, Y., Sheng Z., and Jing, J. R. (2019). Feature analysis of stratospheric wind and temperature fields over the Antigua site rocket data. Earth Planet. Phys., 3(5), 414-424.

Lima, L. M., Batista, P. P., Clemesha, B. R., and Takahashi, H. (2005). The 6.5-day oscillations observed in meteor winds over Cachoeira Paulista (22.7°S). Adv. Space Res., 36(11), 2212–2217.

Lin, P., Held, I., and Ming, Y. (2019). The early development of the 2015/16 quasi-biennial oscillation disruption. J. Atmos. Sci., 76(3), 821–836.

Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin, D. M., and Yee, J. H. (2004). The 6.5-day wave and its seasonal variability in the middle and upper atmosphere. J. Geophys. Res. :Atmos., 109(D21), D21112.

Liu, M. H., Xu, J. Y., Liu, H. L., and Liu, X. (2016). Possible modulation of migrating diurnal tide by latitudinal gradient of zonal wind observed by SABER/TIMED. Sci. China Earth Sci., 59(2), 408–417.

Liu, X., Xu, J. Y., and Yue, J. (2020). Global static stability and its relation to gravity waves in the middle atmosphere. Earth Planet. Phys., 4(5), 504–512.

Merkel, A. W., Thomas, G. E., Palo, S. E., and Bailey, S. M. (2003). Observations of the 5-day planetary wave in PMC measurements from the Student Nitric Oxide Explorer Satellite. Geophys. Res. Lett., 30(4), 1196.

Merzlyakov, E. G., Solovjova, T. V., and Yudakov, A. A. (2013). The interannual variability of a 5–7 day wave in the middle atmosphere in autumn from ERA product data, Aura MLS data, and meteor wind data. J. Atmos. Sol. Terr. Phys., 102, 281–289.

Merzlyakov, E. G., Jacobi, C., and Solovjova, T. V. (2015). The year-to-year variability of the autumn transition dates in the mesosphere/lower thermosphere wind regime and its coupling with the dynamics of the stratosphere and troposphere. J. Atmos. Sol. Terr. Phys., 122, 9–17.

Meyer, C. K., and Forbes, J. M. (1997). A 6.5-day westward propagating planetary wave: origin and characteristics. J. Geophys. Res. :Atmos., 102(D22), 26173–26178.

Miyoshi, Y., and Hirooka, T. (2003). Quasi-biennial variation of the 5-day wave in the stratosphere. J. Geophys. Res.:Atmos., 108(D19), 4620.

Newman, P. A., Coy, L., Pawson, S., and Lait, L. R. (2016). The anomalous change in the QBO in 2015-2016. Geophys. Res. Lett., 43(16), 8791–8797.

Pancheva, D., Mukhtarov, P., Andonov, B., and Forbes, J. M. (2010). Global distribution and climatological features of the 5–6-day planetary waves seen in the SABER/TIMED temperatures. (20022007). J. Atmos. Sol. Terr. Phys., 72(1), 26–37.

Pancheva, D., Mukhtarov, P., and Siskind, D. E. (2018). Climatology of the quasi-2-day waves observed in the MLS/Aura measurements (2005–2014). J. Atmos. Sol. Terr. Phys., 171, 210–224.

Qin, Y. S., Gu, S. Y., Teng, C. K. M., Dou, X. K., Yu, Y., and Li, N. (2021). Comprehensive study of the climatology of the quasi-6-day wave in the MLT region based on aura/MLS observations and SD-WACCM-X simulations. J. Geophys. Res.:Space Phys., 126(1), e2020JA028454.

Rao, J., Yu, Y. Y., Guo, D., Shi, C. H., Chen, D., and Hu, D. Z. (2019). Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses. Earth Planet. Phys., 3(2), 166–181.

Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. G. (1961). Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66(3), 813–818.

Rezac, L. , Kutepov, A. , Russell III, J. M. , Feofilov, A. G. , Yue, J. , and Goldberg, R. A. (2015). Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements. J. Atmos. Sol. Terr. Phys. , 130-131, 23-42.

Riggin, D. M., Liu, H. L., Lieberman, R. S., Roble, R. G., Russell III, J. M., Mertens, C. J., Mlynczak, M. G., Pancheva, D., Franke, S. J., … Vincent, R. A. (2006). Observations of the 5-day wave in the mesosphere and lower thermosphere. J. Atmos. Sol. Terr. Phys., 68(3-5), 323–339.

Shuai, J., Zhang, S. D., Huang, C. M., Yi, F., Huang, K. M., Gan, Q., and Gong, Y. (2014). Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations. Sci. China Technol. Sci., 57(5), 998–1009.

Simmons, A. , Soci, C. , Nicolas, J. , Bell, B. , Berrisford, P. , Dragani, R. , Flemming, J. , Haimberger, L. , Healy, S. , … Schepers, D. (2020). Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1. Technical Memorandum 859, Reading, UK: ECMWF.

Solomon, A., Richter, J. H., and Bacmeister, J. T. (2014). An objective analysis of the QBO in ERA-Interim and the Community Atmosphere Model, version 5. Geophys. Res. Lett., 41(22), 7791–7798.

Talaat, E. R., Yee, J. H., and Zhu, X. (2001). Observations of the 6.5-day wave in the mesosphere and lower thermosphere. J. Geophys. Res.:Atmos., 106(D18), 20715–20723.

Talaat, E. R., Yee, J. H., and Zhu, X. (2002). The 6.5-day wave in the tropical stratosphere and mesosphere. J. Geophys. Res. :Atmos., 107(D12), 4133.

Tao, M. C., Konopka, P., Ploeger, F., Riese, M., Müller, R., and Volk, C. M. (2015). Impact of stratospheric major warmings and the quasi-biennial oscillation on the variability of stratospheric water vapor. Geophys. Res. Lett., 42(11), 4599–4607.

von Savigny, C., Robert, C., Bovensmann, H., Burrows, J. P., and Schwartz, M. (2007). Satellite observations of the quasi 5-day wave in noctilucent clouds and mesopause temperatures. Geophys. Res. Lett., 34(24), L24808.

Wallace, J. M., Panetta, R. L., and Estberg, J. (1993). Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50(12), 1751–1762.<1751:ROTESQ>2.0.CO;2

Wang, J. Y., Yi, W., Chen, T. D., and Xue, X. H. (2020). Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation. Earth Planet. Phys., 4(3), 285–295.

Wu, D. L., Hays, P. B., and Skinner, W. R. (1994). Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophys. Res. Lett., 21(24), 2733–2736.

Xu, J. Y., Liu, H. L., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J., Russell III, J. M., and Mlynczak, M. G. (2007). Mesopause structure from thermosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J. Geophys. Res.:Atmos., 112(D9), D09102.

Zawodny, J. M., and McCormick, M. P. (1991). Stratospheric aerosol and gas experiment II measurements of the quasi -biennial oscillations in ozone and nitrogen dioxide. J. Geophys. Res.:Atmos., 96(D5), 9371–9377.

Zhang, X. L., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E., Mertens, C. J., and Mlynczak, M. G. (2006). Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res.:Space Phys., 111(A10), A10S08.


Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029


Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033


Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049


ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026


Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052


Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050


Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026


WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics, 6, 161-176. doi: 10.26464/epp2022020


Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046


Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036


Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Inter-annual variations of 6.5-day planetary waves and their relations with QBO

YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li